Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  llynlly Structured version   Unicode version

Theorem llynlly 20270
 Description: A locally space is n-locally : the "n-locally" predicate is the weaker notion. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
llynlly Locally 𝑛Locally

Proof of Theorem llynlly
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 20265 . 2 Locally
2 llyi 20267 . . . . 5 Locally t
3 simpl1 1000 . . . . . . . . . . 11 Locally t Locally
43, 1syl 17 . . . . . . . . . 10 Locally t
5 simprl 756 . . . . . . . . . 10 Locally t
6 simprr2 1046 . . . . . . . . . 10 Locally t
7 opnneip 19913 . . . . . . . . . 10
84, 5, 6, 7syl3anc 1230 . . . . . . . . 9 Locally t
9 simprr1 1045 . . . . . . . . . 10 Locally t
10 selpw 3962 . . . . . . . . . 10
119, 10sylibr 212 . . . . . . . . 9 Locally t
128, 11elind 3627 . . . . . . . 8 Locally t
13 simprr3 1047 . . . . . . . 8 Locally t t
1412, 13jca 530 . . . . . . 7 Locally t t
1514ex 432 . . . . . 6 Locally t t
1615reximdv2 2875 . . . . 5 Locally t t
172, 16mpd 15 . . . 4 Locally t
18173expb 1198 . . 3 Locally t
1918ralrimivva 2825 . 2 Locally t
20 isnlly 20262 . 2 𝑛Locally t
211, 19, 20sylanbrc 662 1 Locally 𝑛Locally
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 367   w3a 974   wcel 1842  wral 2754  wrex 2755   cin 3413   wss 3414  cpw 3955  csn 3972  cfv 5569  (class class class)co 6278   ↾t crest 15035  ctop 19686  cnei 19891  Locally clly 20257  𝑛Locally cnlly 20258 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630 This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-ov 6281  df-top 19691  df-nei 19892  df-lly 20259  df-nlly 20260 This theorem is referenced by:  llyssnlly  20271  symgtgp  20892
 Copyright terms: Public domain W3C validator