MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  llyidm Structured version   Unicode version

Theorem llyidm 20490
Description: Idempotence of the "locally" predicate, i.e. being "locally  A " is a local property. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
llyidm  |- Locally Locally  A  = Locally  A

Proof of Theorem llyidm
Dummy variables  j  u  v  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 20474 . . . 4  |-  ( j  e. Locally Locally  A  ->  j  e.  Top )
2 llyi 20476 . . . . . . 7  |-  ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  ->  E. u  e.  j  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A )
)
3 simprr3 1055 . . . . . . . . 9  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  (
jt  u )  e. Locally  A )
4 simprl 762 . . . . . . . . . 10  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  u  e.  j )
5 ssid 3483 . . . . . . . . . . 11  |-  u  C_  u
65a1i 11 . . . . . . . . . 10  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  u  C_  u )
713ad2ant1 1026 . . . . . . . . . . . 12  |-  ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  ->  j  e.  Top )
87adantr 466 . . . . . . . . . . 11  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  j  e.  Top )
9 restopn2 20180 . . . . . . . . . . 11  |-  ( ( j  e.  Top  /\  u  e.  j )  ->  ( u  e.  ( jt  u )  <->  ( u  e.  j  /\  u  C_  u ) ) )
108, 4, 9syl2anc 665 . . . . . . . . . 10  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  (
u  e.  ( jt  u )  <->  ( u  e.  j  /\  u  C_  u ) ) )
114, 6, 10mpbir2and 930 . . . . . . . . 9  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  u  e.  ( jt  u ) )
12 simprr2 1054 . . . . . . . . 9  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  y  e.  u )
13 llyi 20476 . . . . . . . . 9  |-  ( ( ( jt  u )  e. Locally  A  /\  u  e.  ( jt  u
)  /\  y  e.  u )  ->  E. v  e.  ( jt  u ) ( v 
C_  u  /\  y  e.  v  /\  (
( jt  u )t  v )  e.  A ) )
143, 11, 12, 13syl3anc 1264 . . . . . . . 8  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  E. v  e.  ( jt  u ) ( v 
C_  u  /\  y  e.  v  /\  (
( jt  u )t  v )  e.  A ) )
15 restopn2 20180 . . . . . . . . . . . 12  |-  ( ( j  e.  Top  /\  u  e.  j )  ->  ( v  e.  ( jt  u )  <->  ( v  e.  j  /\  v  C_  u ) ) )
168, 4, 15syl2anc 665 . . . . . . . . . . 11  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  (
v  e.  ( jt  u )  <->  ( v  e.  j  /\  v  C_  u ) ) )
17 simpl 458 . . . . . . . . . . 11  |-  ( ( v  e.  j  /\  v  C_  u )  -> 
v  e.  j )
1816, 17syl6bi 231 . . . . . . . . . 10  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  (
v  e.  ( jt  u )  ->  v  e.  j ) )
19 simprl 762 . . . . . . . . . . . . 13  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  e.  j )
20 simprr1 1053 . . . . . . . . . . . . . . 15  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  C_  u )
21 simprr1 1053 . . . . . . . . . . . . . . . 16  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  u  C_  x )
2221adantr 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  u  C_  x )
2320, 22sstrd 3474 . . . . . . . . . . . . . 14  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  C_  x )
24 selpw 3986 . . . . . . . . . . . . . 14  |-  ( v  e.  ~P x  <->  v  C_  x )
2523, 24sylibr 215 . . . . . . . . . . . . 13  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  e.  ~P x )
2619, 25elind 3650 . . . . . . . . . . . 12  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  e.  ( j  i^i  ~P x ) )
27 simprr2 1054 . . . . . . . . . . . 12  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  y  e.  v )
288adantr 466 . . . . . . . . . . . . . 14  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  j  e.  Top )
29 simplrl 768 . . . . . . . . . . . . . 14  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  u  e.  j )
30 restabs 20168 . . . . . . . . . . . . . 14  |-  ( ( j  e.  Top  /\  v  C_  u  /\  u  e.  j )  ->  (
( jt  u )t  v )  =  ( jt  v ) )
3128, 20, 29, 30syl3anc 1264 . . . . . . . . . . . . 13  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  (
( jt  u )t  v )  =  ( jt  v ) )
32 simprr3 1055 . . . . . . . . . . . . 13  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  (
( jt  u )t  v )  e.  A )
3331, 32eqeltrrd 2511 . . . . . . . . . . . 12  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  (
jt  v )  e.  A
)
3426, 27, 33jca32 537 . . . . . . . . . . 11  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  (
v  e.  ( j  i^i  ~P x )  /\  ( y  e.  v  /\  ( jt  v )  e.  A ) ) )
3534ex 435 . . . . . . . . . 10  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  (
( v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A
) )  ->  (
v  e.  ( j  i^i  ~P x )  /\  ( y  e.  v  /\  ( jt  v )  e.  A ) ) ) )
3618, 35syland 483 . . . . . . . . 9  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  (
( v  e.  ( jt  u )  /\  (
v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) )  ->  ( v  e.  ( j  i^i  ~P x )  /\  (
y  e.  v  /\  ( jt  v )  e.  A ) ) ) )
3736reximdv2 2896 . . . . . . . 8  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  ( E. v  e.  (
jt  u ) ( v 
C_  u  /\  y  e.  v  /\  (
( jt  u )t  v )  e.  A )  ->  E. v  e.  ( j  i^i  ~P x ) ( y  e.  v  /\  (
jt  v )  e.  A
) ) )
3814, 37mpd 15 . . . . . . 7  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  E. v  e.  ( j  i^i  ~P x ) ( y  e.  v  /\  (
jt  v )  e.  A
) )
392, 38rexlimddv 2921 . . . . . 6  |-  ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  ->  E. v  e.  ( j  i^i  ~P x ) ( y  e.  v  /\  (
jt  v )  e.  A
) )
40393expb 1206 . . . . 5  |-  ( ( j  e. Locally Locally  A  /\  (
x  e.  j  /\  y  e.  x )
)  ->  E. v  e.  ( j  i^i  ~P x ) ( y  e.  v  /\  (
jt  v )  e.  A
) )
4140ralrimivva 2846 . . . 4  |-  ( j  e. Locally Locally  A  ->  A. x  e.  j  A. y  e.  x  E. v  e.  ( j  i^i  ~P x ) ( y  e.  v  /\  (
jt  v )  e.  A
) )
42 islly 20470 . . . 4  |-  ( j  e. Locally  A  <->  ( j  e. 
Top  /\  A. x  e.  j  A. y  e.  x  E. v  e.  ( j  i^i  ~P x ) ( y  e.  v  /\  (
jt  v )  e.  A
) ) )
431, 41, 42sylanbrc 668 . . 3  |-  ( j  e. Locally Locally  A  ->  j  e. Locally  A )
4443ssriv 3468 . 2  |- Locally Locally  A  C_ Locally  A
45 llyrest 20487 . . . . 5  |-  ( ( j  e. Locally  A  /\  x  e.  j )  ->  ( jt  x )  e. Locally  A )
4645adantl 467 . . . 4  |-  ( ( T.  /\  ( j  e. Locally  A  /\  x  e.  j ) )  -> 
( jt  x )  e. Locally  A )
47 llytop 20474 . . . . . 6  |-  ( j  e. Locally  A  ->  j  e. 
Top )
4847ssriv 3468 . . . . 5  |- Locally  A  C_  Top
4948a1i 11 . . . 4  |-  ( T. 
-> Locally  A  C_  Top )
5046, 49restlly 20485 . . 3  |-  ( T. 
-> Locally  A  C_ Locally Locally  A )
5150trud 1446 . 2  |- Locally  A  C_ Locally Locally  A
5244, 51eqssi 3480 1  |- Locally Locally  A  = Locally  A
Colors of variables: wff setvar class
Syntax hints:    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437   T. wtru 1438    e. wcel 1868   A.wral 2775   E.wrex 2776    i^i cin 3435    C_ wss 3436   ~Pcpw 3979  (class class class)co 6302   ↾t crest 15307   Topctop 19904  Locally clly 20466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4552  ax-pow 4599  ax-pr 4657  ax-un 6594
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-ral 2780  df-rex 2781  df-reu 2782  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4761  df-id 4765  df-po 4771  df-so 4772  df-fr 4809  df-we 4811  df-xp 4856  df-rel 4857  df-cnv 4858  df-co 4859  df-dm 4860  df-rn 4861  df-res 4862  df-ima 4863  df-pred 5396  df-ord 5442  df-on 5443  df-lim 5444  df-suc 5445  df-iota 5562  df-fun 5600  df-fn 5601  df-f 5602  df-f1 5603  df-fo 5604  df-f1o 5605  df-fv 5606  df-ov 6305  df-oprab 6306  df-mpt2 6307  df-om 6704  df-1st 6804  df-2nd 6805  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-oadd 7191  df-er 7368  df-en 7575  df-fin 7578  df-fi 7928  df-rest 15309  df-topgen 15330  df-top 19908  df-bases 19909  df-topon 19910  df-lly 20468
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator