MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  llyidm Structured version   Unicode version

Theorem llyidm 19966
Description: Idempotence of the "locally" predicate, i.e. being "locally  A " is a local property. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
llyidm  |- Locally Locally  A  = Locally  A

Proof of Theorem llyidm
Dummy variables  j  u  v  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 19950 . . . 4  |-  ( j  e. Locally Locally  A  ->  j  e.  Top )
2 llyi 19952 . . . . . . 7  |-  ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  ->  E. u  e.  j  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A )
)
3 simprr3 1047 . . . . . . . . 9  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  (
jt  u )  e. Locally  A )
4 simprl 756 . . . . . . . . . 10  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  u  e.  j )
5 ssid 3508 . . . . . . . . . . 11  |-  u  C_  u
65a1i 11 . . . . . . . . . 10  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  u  C_  u )
713ad2ant1 1018 . . . . . . . . . . . 12  |-  ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  ->  j  e.  Top )
87adantr 465 . . . . . . . . . . 11  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  j  e.  Top )
9 restopn2 19655 . . . . . . . . . . 11  |-  ( ( j  e.  Top  /\  u  e.  j )  ->  ( u  e.  ( jt  u )  <->  ( u  e.  j  /\  u  C_  u ) ) )
108, 4, 9syl2anc 661 . . . . . . . . . 10  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  (
u  e.  ( jt  u )  <->  ( u  e.  j  /\  u  C_  u ) ) )
114, 6, 10mpbir2and 922 . . . . . . . . 9  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  u  e.  ( jt  u ) )
12 simprr2 1046 . . . . . . . . 9  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  y  e.  u )
13 llyi 19952 . . . . . . . . 9  |-  ( ( ( jt  u )  e. Locally  A  /\  u  e.  ( jt  u
)  /\  y  e.  u )  ->  E. v  e.  ( jt  u ) ( v 
C_  u  /\  y  e.  v  /\  (
( jt  u )t  v )  e.  A ) )
143, 11, 12, 13syl3anc 1229 . . . . . . . 8  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  E. v  e.  ( jt  u ) ( v 
C_  u  /\  y  e.  v  /\  (
( jt  u )t  v )  e.  A ) )
15 restopn2 19655 . . . . . . . . . . . 12  |-  ( ( j  e.  Top  /\  u  e.  j )  ->  ( v  e.  ( jt  u )  <->  ( v  e.  j  /\  v  C_  u ) ) )
168, 4, 15syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  (
v  e.  ( jt  u )  <->  ( v  e.  j  /\  v  C_  u ) ) )
17 simpl 457 . . . . . . . . . . 11  |-  ( ( v  e.  j  /\  v  C_  u )  -> 
v  e.  j )
1816, 17syl6bi 228 . . . . . . . . . 10  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  (
v  e.  ( jt  u )  ->  v  e.  j ) )
19 simprl 756 . . . . . . . . . . . . 13  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  e.  j )
20 simprr1 1045 . . . . . . . . . . . . . . 15  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  C_  u )
21 simprr1 1045 . . . . . . . . . . . . . . . 16  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  u  C_  x )
2221adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  u  C_  x )
2320, 22sstrd 3499 . . . . . . . . . . . . . 14  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  C_  x )
24 selpw 4004 . . . . . . . . . . . . . 14  |-  ( v  e.  ~P x  <->  v  C_  x )
2523, 24sylibr 212 . . . . . . . . . . . . 13  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  e.  ~P x )
2619, 25elind 3673 . . . . . . . . . . . 12  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  v  e.  ( j  i^i  ~P x ) )
27 simprr2 1046 . . . . . . . . . . . 12  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  y  e.  v )
288adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  j  e.  Top )
29 simplrl 761 . . . . . . . . . . . . . 14  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  u  e.  j )
30 restabs 19643 . . . . . . . . . . . . . 14  |-  ( ( j  e.  Top  /\  v  C_  u  /\  u  e.  j )  ->  (
( jt  u )t  v )  =  ( jt  v ) )
3128, 20, 29, 30syl3anc 1229 . . . . . . . . . . . . 13  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  (
( jt  u )t  v )  =  ( jt  v ) )
32 simprr3 1047 . . . . . . . . . . . . 13  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  (
( jt  u )t  v )  e.  A )
3331, 32eqeltrrd 2532 . . . . . . . . . . . 12  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  (
jt  v )  e.  A
)
3426, 27, 33jca32 535 . . . . . . . . . . 11  |-  ( ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x
)  /\  ( u  e.  j  /\  (
u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  /\  (
v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) ) )  ->  (
v  e.  ( j  i^i  ~P x )  /\  ( y  e.  v  /\  ( jt  v )  e.  A ) ) )
3534ex 434 . . . . . . . . . 10  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  (
( v  e.  j  /\  ( v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A
) )  ->  (
v  e.  ( j  i^i  ~P x )  /\  ( y  e.  v  /\  ( jt  v )  e.  A ) ) ) )
3618, 35syland 481 . . . . . . . . 9  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  (
( v  e.  ( jt  u )  /\  (
v  C_  u  /\  y  e.  v  /\  ( ( jt  u )t  v )  e.  A ) )  ->  ( v  e.  ( j  i^i  ~P x )  /\  (
y  e.  v  /\  ( jt  v )  e.  A ) ) ) )
3736reximdv2 2914 . . . . . . . 8  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  ( E. v  e.  (
jt  u ) ( v 
C_  u  /\  y  e.  v  /\  (
( jt  u )t  v )  e.  A )  ->  E. v  e.  ( j  i^i  ~P x ) ( y  e.  v  /\  (
jt  v )  e.  A
) ) )
3814, 37mpd 15 . . . . . . 7  |-  ( ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  /\  ( u  e.  j  /\  ( u  C_  x  /\  y  e.  u  /\  ( jt  u )  e. Locally  A ) ) )  ->  E. v  e.  ( j  i^i  ~P x ) ( y  e.  v  /\  (
jt  v )  e.  A
) )
392, 38rexlimddv 2939 . . . . . 6  |-  ( ( j  e. Locally Locally  A  /\  x  e.  j  /\  y  e.  x )  ->  E. v  e.  ( j  i^i  ~P x ) ( y  e.  v  /\  (
jt  v )  e.  A
) )
40393expb 1198 . . . . 5  |-  ( ( j  e. Locally Locally  A  /\  (
x  e.  j  /\  y  e.  x )
)  ->  E. v  e.  ( j  i^i  ~P x ) ( y  e.  v  /\  (
jt  v )  e.  A
) )
4140ralrimivva 2864 . . . 4  |-  ( j  e. Locally Locally  A  ->  A. x  e.  j  A. y  e.  x  E. v  e.  ( j  i^i  ~P x ) ( y  e.  v  /\  (
jt  v )  e.  A
) )
42 islly 19946 . . . 4  |-  ( j  e. Locally  A  <->  ( j  e. 
Top  /\  A. x  e.  j  A. y  e.  x  E. v  e.  ( j  i^i  ~P x ) ( y  e.  v  /\  (
jt  v )  e.  A
) ) )
431, 41, 42sylanbrc 664 . . 3  |-  ( j  e. Locally Locally  A  ->  j  e. Locally  A )
4443ssriv 3493 . 2  |- Locally Locally  A  C_ Locally  A
45 llyrest 19963 . . . . 5  |-  ( ( j  e. Locally  A  /\  x  e.  j )  ->  ( jt  x )  e. Locally  A )
4645adantl 466 . . . 4  |-  ( ( T.  /\  ( j  e. Locally  A  /\  x  e.  j ) )  -> 
( jt  x )  e. Locally  A )
47 llytop 19950 . . . . . 6  |-  ( j  e. Locally  A  ->  j  e. 
Top )
4847ssriv 3493 . . . . 5  |- Locally  A  C_  Top
4948a1i 11 . . . 4  |-  ( T. 
-> Locally  A  C_  Top )
5046, 49restlly 19961 . . 3  |-  ( T. 
-> Locally  A  C_ Locally Locally  A )
5150trud 1392 . 2  |- Locally  A  C_ Locally Locally  A
5244, 51eqssi 3505 1  |- Locally Locally  A  = Locally  A
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383   T. wtru 1384    e. wcel 1804   A.wral 2793   E.wrex 2794    i^i cin 3460    C_ wss 3461   ~Pcpw 3997  (class class class)co 6281   ↾t crest 14799   Topctop 19371  Locally clly 19942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-oadd 7136  df-er 7313  df-en 7519  df-fin 7522  df-fi 7873  df-rest 14801  df-topgen 14822  df-top 19376  df-bases 19378  df-topon 19379  df-lly 19944
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator