Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnset Structured version   Unicode version

Theorem llnset 35330
Description: The set of lattice lines in a Hilbert lattice. (Contributed by NM, 16-Jun-2012.)
Hypotheses
Ref Expression
llnset.b  |-  B  =  ( Base `  K
)
llnset.c  |-  C  =  (  <o  `  K )
llnset.a  |-  A  =  ( Atoms `  K )
llnset.n  |-  N  =  ( LLines `  K )
Assertion
Ref Expression
llnset  |-  ( K  e.  D  ->  N  =  { x  e.  B  |  E. p  e.  A  p C x } )
Distinct variable groups:    A, p    x, B    x, p, K
Allowed substitution hints:    A( x)    B( p)    C( x, p)    D( x, p)    N( x, p)

Proof of Theorem llnset
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 3118 . 2  |-  ( K  e.  D  ->  K  e.  _V )
2 llnset.n . . 3  |-  N  =  ( LLines `  K )
3 fveq2 5872 . . . . . 6  |-  ( k  =  K  ->  ( Base `  k )  =  ( Base `  K
) )
4 llnset.b . . . . . 6  |-  B  =  ( Base `  K
)
53, 4syl6eqr 2516 . . . . 5  |-  ( k  =  K  ->  ( Base `  k )  =  B )
6 fveq2 5872 . . . . . . 7  |-  ( k  =  K  ->  ( Atoms `  k )  =  ( Atoms `  K )
)
7 llnset.a . . . . . . 7  |-  A  =  ( Atoms `  K )
86, 7syl6eqr 2516 . . . . . 6  |-  ( k  =  K  ->  ( Atoms `  k )  =  A )
9 fveq2 5872 . . . . . . . 8  |-  ( k  =  K  ->  (  <o  `  k )  =  (  <o  `  K )
)
10 llnset.c . . . . . . . 8  |-  C  =  (  <o  `  K )
119, 10syl6eqr 2516 . . . . . . 7  |-  ( k  =  K  ->  (  <o  `  k )  =  C )
1211breqd 4467 . . . . . 6  |-  ( k  =  K  ->  (
p (  <o  `  k
) x  <->  p C x ) )
138, 12rexeqbidv 3069 . . . . 5  |-  ( k  =  K  ->  ( E. p  e.  ( Atoms `  k ) p (  <o  `  k )
x  <->  E. p  e.  A  p C x ) )
145, 13rabeqbidv 3104 . . . 4  |-  ( k  =  K  ->  { x  e.  ( Base `  k
)  |  E. p  e.  ( Atoms `  k )
p (  <o  `  k
) x }  =  { x  e.  B  |  E. p  e.  A  p C x } )
15 df-llines 35323 . . . 4  |-  LLines  =  ( k  e.  _V  |->  { x  e.  ( Base `  k )  |  E. p  e.  ( Atoms `  k ) p ( 
<o  `  k ) x } )
16 fvex 5882 . . . . . 6  |-  ( Base `  K )  e.  _V
174, 16eqeltri 2541 . . . . 5  |-  B  e. 
_V
1817rabex 4607 . . . 4  |-  { x  e.  B  |  E. p  e.  A  p C x }  e.  _V
1914, 15, 18fvmpt 5956 . . 3  |-  ( K  e.  _V  ->  ( LLines `
 K )  =  { x  e.  B  |  E. p  e.  A  p C x } )
202, 19syl5eq 2510 . 2  |-  ( K  e.  _V  ->  N  =  { x  e.  B  |  E. p  e.  A  p C x } )
211, 20syl 16 1  |-  ( K  e.  D  ->  N  =  { x  e.  B  |  E. p  e.  A  p C x } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 1819   E.wrex 2808   {crab 2811   _Vcvv 3109   class class class wbr 4456   ` cfv 5594   Basecbs 14643    <o ccvr 35088   Atomscatm 35089   LLinesclln 35316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-iota 5557  df-fun 5596  df-fv 5602  df-llines 35323
This theorem is referenced by:  islln  35331
  Copyright terms: Public domain W3C validator