Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnset Structured version   Unicode version

Theorem llnset 33149
Description: The set of lattice lines in a Hilbert lattice. (Contributed by NM, 16-Jun-2012.)
Hypotheses
Ref Expression
llnset.b  |-  B  =  ( Base `  K
)
llnset.c  |-  C  =  (  <o  `  K )
llnset.a  |-  A  =  ( Atoms `  K )
llnset.n  |-  N  =  ( LLines `  K )
Assertion
Ref Expression
llnset  |-  ( K  e.  D  ->  N  =  { x  e.  B  |  E. p  e.  A  p C x } )
Distinct variable groups:    A, p    x, B    x, p, K
Allowed substitution hints:    A( x)    B( p)    C( x, p)    D( x, p)    N( x, p)

Proof of Theorem llnset
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 2981 . 2  |-  ( K  e.  D  ->  K  e.  _V )
2 llnset.n . . 3  |-  N  =  ( LLines `  K )
3 fveq2 5691 . . . . . 6  |-  ( k  =  K  ->  ( Base `  k )  =  ( Base `  K
) )
4 llnset.b . . . . . 6  |-  B  =  ( Base `  K
)
53, 4syl6eqr 2493 . . . . 5  |-  ( k  =  K  ->  ( Base `  k )  =  B )
6 fveq2 5691 . . . . . . 7  |-  ( k  =  K  ->  ( Atoms `  k )  =  ( Atoms `  K )
)
7 llnset.a . . . . . . 7  |-  A  =  ( Atoms `  K )
86, 7syl6eqr 2493 . . . . . 6  |-  ( k  =  K  ->  ( Atoms `  k )  =  A )
9 fveq2 5691 . . . . . . . 8  |-  ( k  =  K  ->  (  <o  `  k )  =  (  <o  `  K )
)
10 llnset.c . . . . . . . 8  |-  C  =  (  <o  `  K )
119, 10syl6eqr 2493 . . . . . . 7  |-  ( k  =  K  ->  (  <o  `  k )  =  C )
1211breqd 4303 . . . . . 6  |-  ( k  =  K  ->  (
p (  <o  `  k
) x  <->  p C x ) )
138, 12rexeqbidv 2932 . . . . 5  |-  ( k  =  K  ->  ( E. p  e.  ( Atoms `  k ) p (  <o  `  k )
x  <->  E. p  e.  A  p C x ) )
145, 13rabeqbidv 2967 . . . 4  |-  ( k  =  K  ->  { x  e.  ( Base `  k
)  |  E. p  e.  ( Atoms `  k )
p (  <o  `  k
) x }  =  { x  e.  B  |  E. p  e.  A  p C x } )
15 df-llines 33142 . . . 4  |-  LLines  =  ( k  e.  _V  |->  { x  e.  ( Base `  k )  |  E. p  e.  ( Atoms `  k ) p ( 
<o  `  k ) x } )
16 fvex 5701 . . . . . 6  |-  ( Base `  K )  e.  _V
174, 16eqeltri 2513 . . . . 5  |-  B  e. 
_V
1817rabex 4443 . . . 4  |-  { x  e.  B  |  E. p  e.  A  p C x }  e.  _V
1914, 15, 18fvmpt 5774 . . 3  |-  ( K  e.  _V  ->  ( LLines `
 K )  =  { x  e.  B  |  E. p  e.  A  p C x } )
202, 19syl5eq 2487 . 2  |-  ( K  e.  _V  ->  N  =  { x  e.  B  |  E. p  e.  A  p C x } )
211, 20syl 16 1  |-  ( K  e.  D  ->  N  =  { x  e.  B  |  E. p  e.  A  p C x } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1369    e. wcel 1756   E.wrex 2716   {crab 2719   _Vcvv 2972   class class class wbr 4292   ` cfv 5418   Basecbs 14174    <o ccvr 32907   Atomscatm 32908   LLinesclln 33135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pr 4531
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-rab 2724  df-v 2974  df-sbc 3187  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-iota 5381  df-fun 5420  df-fv 5426  df-llines 33142
This theorem is referenced by:  islln  33150
  Copyright terms: Public domain W3C validator