Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnneat Structured version   Unicode version

Theorem llnneat 35381
Description: A lattice line is not an atom. (Contributed by NM, 19-Jun-2012.)
Hypotheses
Ref Expression
llnneat.a  |-  A  =  ( Atoms `  K )
llnneat.n  |-  N  =  ( LLines `  K )
Assertion
Ref Expression
llnneat  |-  ( ( K  e.  HL  /\  X  e.  N )  ->  -.  X  e.  A
)

Proof of Theorem llnneat
StepHypRef Expression
1 hllat 35231 . . 3  |-  ( K  e.  HL  ->  K  e.  Lat )
2 eqid 2457 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
3 llnneat.n . . . 4  |-  N  =  ( LLines `  K )
42, 3llnbase 35376 . . 3  |-  ( X  e.  N  ->  X  e.  ( Base `  K
) )
5 eqid 2457 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
62, 5latref 15810 . . 3  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K ) )  ->  X ( le `  K ) X )
71, 4, 6syl2an 477 . 2  |-  ( ( K  e.  HL  /\  X  e.  N )  ->  X ( le `  K ) X )
8 llnneat.a . . . 4  |-  A  =  ( Atoms `  K )
95, 8, 3llnnleat 35380 . . 3  |-  ( ( K  e.  HL  /\  X  e.  N  /\  X  e.  A )  ->  -.  X ( le
`  K ) X )
1093expia 1198 . 2  |-  ( ( K  e.  HL  /\  X  e.  N )  ->  ( X  e.  A  ->  -.  X ( le
`  K ) X ) )
117, 10mt2d 117 1  |-  ( ( K  e.  HL  /\  X  e.  N )  ->  -.  X  e.  A
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819   class class class wbr 4456   ` cfv 5594   Basecbs 14644   lecple 14719   Latclat 15802   Atomscatm 35131   HLchlt 35218   LLinesclln 35358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-preset 15684  df-poset 15702  df-plt 15715  df-glb 15732  df-p0 15796  df-lat 15803  df-covers 35134  df-ats 35135  df-atl 35166  df-cvlat 35190  df-hlat 35219  df-llines 35365
This theorem is referenced by:  2atneat  35382  islln2a  35384  cdleme22b  36210  cdlemh  36686
  Copyright terms: Public domain W3C validator