Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llni2 Structured version   Unicode version

Theorem llni2 34183
Description: The join of two different atoms is a lattice line. (Contributed by NM, 26-Jun-2012.)
Hypotheses
Ref Expression
llni2.j  |-  .\/  =  ( join `  K )
llni2.a  |-  A  =  ( Atoms `  K )
llni2.n  |-  N  =  ( LLines `  K )
Assertion
Ref Expression
llni2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  ( P  .\/  Q )  e.  N
)

Proof of Theorem llni2
Dummy variables  s 
r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 995 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  P  e.  A )
2 simpl3 996 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  Q  e.  A )
3 simpr 461 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  P  =/=  Q )
4 eqidd 2461 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  ( P  .\/  Q )  =  ( P  .\/  Q ) )
5 neeq1 2741 . . . . 5  |-  ( r  =  P  ->  (
r  =/=  s  <->  P  =/=  s ) )
6 oveq1 6282 . . . . . 6  |-  ( r  =  P  ->  (
r  .\/  s )  =  ( P  .\/  s ) )
76eqeq2d 2474 . . . . 5  |-  ( r  =  P  ->  (
( P  .\/  Q
)  =  ( r 
.\/  s )  <->  ( P  .\/  Q )  =  ( P  .\/  s ) ) )
85, 7anbi12d 710 . . . 4  |-  ( r  =  P  ->  (
( r  =/=  s  /\  ( P  .\/  Q
)  =  ( r 
.\/  s ) )  <-> 
( P  =/=  s  /\  ( P  .\/  Q
)  =  ( P 
.\/  s ) ) ) )
9 neeq2 2743 . . . . 5  |-  ( s  =  Q  ->  ( P  =/=  s  <->  P  =/=  Q ) )
10 oveq2 6283 . . . . . 6  |-  ( s  =  Q  ->  ( P  .\/  s )  =  ( P  .\/  Q
) )
1110eqeq2d 2474 . . . . 5  |-  ( s  =  Q  ->  (
( P  .\/  Q
)  =  ( P 
.\/  s )  <->  ( P  .\/  Q )  =  ( P  .\/  Q ) ) )
129, 11anbi12d 710 . . . 4  |-  ( s  =  Q  ->  (
( P  =/=  s  /\  ( P  .\/  Q
)  =  ( P 
.\/  s ) )  <-> 
( P  =/=  Q  /\  ( P  .\/  Q
)  =  ( P 
.\/  Q ) ) ) )
138, 12rspc2ev 3218 . . 3  |-  ( ( P  e.  A  /\  Q  e.  A  /\  ( P  =/=  Q  /\  ( P  .\/  Q
)  =  ( P 
.\/  Q ) ) )  ->  E. r  e.  A  E. s  e.  A  ( r  =/=  s  /\  ( P  .\/  Q )  =  ( r  .\/  s
) ) )
141, 2, 3, 4, 13syl112anc 1227 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  E. r  e.  A  E. s  e.  A  ( r  =/=  s  /\  ( P  .\/  Q )  =  ( r  .\/  s
) ) )
15 simpl1 994 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  K  e.  HL )
16 eqid 2460 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
17 llni2.j . . . . 5  |-  .\/  =  ( join `  K )
18 llni2.a . . . . 5  |-  A  =  ( Atoms `  K )
1916, 17, 18hlatjcl 34038 . . . 4  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
2019adantr 465 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  ( P  .\/  Q )  e.  (
Base `  K )
)
21 llni2.n . . . 4  |-  N  =  ( LLines `  K )
2216, 17, 18, 21islln3 34181 . . 3  |-  ( ( K  e.  HL  /\  ( P  .\/  Q )  e.  ( Base `  K
) )  ->  (
( P  .\/  Q
)  e.  N  <->  E. r  e.  A  E. s  e.  A  ( r  =/=  s  /\  ( P  .\/  Q )  =  ( r  .\/  s
) ) ) )
2315, 20, 22syl2anc 661 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  ( ( P  .\/  Q )  e.  N  <->  E. r  e.  A  E. s  e.  A  ( r  =/=  s  /\  ( P  .\/  Q
)  =  ( r 
.\/  s ) ) ) )
2414, 23mpbird 232 1  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  ( P  .\/  Q )  e.  N
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762    =/= wne 2655   E.wrex 2808   ` cfv 5579  (class class class)co 6275   Basecbs 14479   joincjn 15420   Atomscatm 33935   HLchlt 34022   LLinesclln 34162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-poset 15422  df-plt 15434  df-lub 15450  df-glb 15451  df-join 15452  df-meet 15453  df-p0 15515  df-lat 15522  df-clat 15584  df-oposet 33848  df-ol 33850  df-oml 33851  df-covers 33938  df-ats 33939  df-atl 33970  df-cvlat 33994  df-hlat 34023  df-llines 34169
This theorem is referenced by:  2atneat  34186  islln2a  34188  2at0mat0  34196  ps-2c  34199  lplnnle2at  34212  2atmat  34232  lplnexllnN  34235  dalempjsen  34324  dalemcea  34331  dalem2  34332  dalemdea  34333  dalem16  34350  dalemcjden  34363  dalem23  34367  dalem54  34397  dalem60  34403  llnexchb2  34540  arglem1N  34861  cdlemc5  34866  cdleme20l1  34991  cdleme20l2  34992  cdleme20l  34993  cdleme22b  35012  cdlemeg46req  35200  cdlemh  35488
  Copyright terms: Public domain W3C validator