Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llni2 Structured version   Unicode version

Theorem llni2 32529
Description: The join of two different atoms is a lattice line. (Contributed by NM, 26-Jun-2012.)
Hypotheses
Ref Expression
llni2.j  |-  .\/  =  ( join `  K )
llni2.a  |-  A  =  ( Atoms `  K )
llni2.n  |-  N  =  ( LLines `  K )
Assertion
Ref Expression
llni2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  ( P  .\/  Q )  e.  N
)

Proof of Theorem llni2
Dummy variables  s 
r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1001 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  P  e.  A )
2 simpl3 1002 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  Q  e.  A )
3 simpr 459 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  P  =/=  Q )
4 eqidd 2403 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  ( P  .\/  Q )  =  ( P  .\/  Q ) )
5 neeq1 2684 . . . . 5  |-  ( r  =  P  ->  (
r  =/=  s  <->  P  =/=  s ) )
6 oveq1 6285 . . . . . 6  |-  ( r  =  P  ->  (
r  .\/  s )  =  ( P  .\/  s ) )
76eqeq2d 2416 . . . . 5  |-  ( r  =  P  ->  (
( P  .\/  Q
)  =  ( r 
.\/  s )  <->  ( P  .\/  Q )  =  ( P  .\/  s ) ) )
85, 7anbi12d 709 . . . 4  |-  ( r  =  P  ->  (
( r  =/=  s  /\  ( P  .\/  Q
)  =  ( r 
.\/  s ) )  <-> 
( P  =/=  s  /\  ( P  .\/  Q
)  =  ( P 
.\/  s ) ) ) )
9 neeq2 2686 . . . . 5  |-  ( s  =  Q  ->  ( P  =/=  s  <->  P  =/=  Q ) )
10 oveq2 6286 . . . . . 6  |-  ( s  =  Q  ->  ( P  .\/  s )  =  ( P  .\/  Q
) )
1110eqeq2d 2416 . . . . 5  |-  ( s  =  Q  ->  (
( P  .\/  Q
)  =  ( P 
.\/  s )  <->  ( P  .\/  Q )  =  ( P  .\/  Q ) ) )
129, 11anbi12d 709 . . . 4  |-  ( s  =  Q  ->  (
( P  =/=  s  /\  ( P  .\/  Q
)  =  ( P 
.\/  s ) )  <-> 
( P  =/=  Q  /\  ( P  .\/  Q
)  =  ( P 
.\/  Q ) ) ) )
138, 12rspc2ev 3171 . . 3  |-  ( ( P  e.  A  /\  Q  e.  A  /\  ( P  =/=  Q  /\  ( P  .\/  Q
)  =  ( P 
.\/  Q ) ) )  ->  E. r  e.  A  E. s  e.  A  ( r  =/=  s  /\  ( P  .\/  Q )  =  ( r  .\/  s
) ) )
141, 2, 3, 4, 13syl112anc 1234 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  E. r  e.  A  E. s  e.  A  ( r  =/=  s  /\  ( P  .\/  Q )  =  ( r  .\/  s
) ) )
15 simpl1 1000 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  K  e.  HL )
16 eqid 2402 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
17 llni2.j . . . . 5  |-  .\/  =  ( join `  K )
18 llni2.a . . . . 5  |-  A  =  ( Atoms `  K )
1916, 17, 18hlatjcl 32384 . . . 4  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
2019adantr 463 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  ( P  .\/  Q )  e.  (
Base `  K )
)
21 llni2.n . . . 4  |-  N  =  ( LLines `  K )
2216, 17, 18, 21islln3 32527 . . 3  |-  ( ( K  e.  HL  /\  ( P  .\/  Q )  e.  ( Base `  K
) )  ->  (
( P  .\/  Q
)  e.  N  <->  E. r  e.  A  E. s  e.  A  ( r  =/=  s  /\  ( P  .\/  Q )  =  ( r  .\/  s
) ) ) )
2315, 20, 22syl2anc 659 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  ( ( P  .\/  Q )  e.  N  <->  E. r  e.  A  E. s  e.  A  ( r  =/=  s  /\  ( P  .\/  Q
)  =  ( r 
.\/  s ) ) ) )
2414, 23mpbird 232 1  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  ( P  .\/  Q )  e.  N
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842    =/= wne 2598   E.wrex 2755   ` cfv 5569  (class class class)co 6278   Basecbs 14841   joincjn 15897   Atomscatm 32281   HLchlt 32368   LLinesclln 32508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-preset 15881  df-poset 15899  df-plt 15912  df-lub 15928  df-glb 15929  df-join 15930  df-meet 15931  df-p0 15993  df-lat 16000  df-clat 16062  df-oposet 32194  df-ol 32196  df-oml 32197  df-covers 32284  df-ats 32285  df-atl 32316  df-cvlat 32340  df-hlat 32369  df-llines 32515
This theorem is referenced by:  2atneat  32532  islln2a  32534  2at0mat0  32542  ps-2c  32545  lplnnle2at  32558  2atmat  32578  lplnexllnN  32581  dalempjsen  32670  dalemcea  32677  dalem2  32678  dalemdea  32679  dalem16  32696  dalemcjden  32709  dalem23  32713  dalem54  32743  dalem60  32749  llnexchb2  32886  arglem1N  33208  cdlemc5  33213  cdleme20l1  33339  cdleme20l2  33340  cdleme20l  33341  cdleme22b  33360  cdlemeg46req  33548  cdlemh  33836
  Copyright terms: Public domain W3C validator