Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnexchb2lem Structured version   Unicode version

Theorem llnexchb2lem 33831
Description: Lemma for llnexchb2 33832. (Contributed by NM, 17-Nov-2012.)
Hypotheses
Ref Expression
llnexch.l  |-  .<_  =  ( le `  K )
llnexch.j  |-  .\/  =  ( join `  K )
llnexch.m  |-  ./\  =  ( meet `  K )
llnexch.a  |-  A  =  ( Atoms `  K )
llnexch.n  |-  N  =  ( LLines `  K )
Assertion
Ref Expression
llnexchb2lem  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  ( ( X 
./\  Y )  .<_  ( P  .\/  Q )  <-> 
( X  ./\  Y
)  =  ( X 
./\  ( P  .\/  Q ) ) ) )

Proof of Theorem llnexchb2lem
StepHypRef Expression
1 simpl11 1063 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  K  e.  HL )
2 simpl21 1066 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  P  e.  A )
3 simpl12 1064 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  X  e.  N )
4 eqid 2452 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
5 llnexch.n . . . . . . . 8  |-  N  =  ( LLines `  K )
64, 5llnbase 33472 . . . . . . 7  |-  ( X  e.  N  ->  X  e.  ( Base `  K
) )
73, 6syl 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  X  e.  ( Base `  K ) )
8 hllat 33327 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
91, 8syl 16 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  K  e.  Lat )
10 simpl13 1065 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  Y  e.  N )
114, 5llnbase 33472 . . . . . . . 8  |-  ( Y  e.  N  ->  Y  e.  ( Base `  K
) )
1210, 11syl 16 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  Y  e.  ( Base `  K ) )
13 llnexch.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
144, 13latmcl 15336 . . . . . . 7  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  ( X  ./\  Y )  e.  ( Base `  K
) )
159, 7, 12, 14syl3anc 1219 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( X  ./\  Y
)  e.  ( Base `  K ) )
16 llnexch.l . . . . . . . 8  |-  .<_  =  ( le `  K )
174, 16, 13latmle1 15360 . . . . . . 7  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  ( X  ./\  Y )  .<_  X )
189, 7, 12, 17syl3anc 1219 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( X  ./\  Y
)  .<_  X )
19 llnexch.j . . . . . . 7  |-  .\/  =  ( join `  K )
20 llnexch.a . . . . . . 7  |-  A  =  ( Atoms `  K )
214, 16, 19, 13, 20atmod2i2 33825 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  ( Base `  K )  /\  ( X  ./\  Y )  e.  ( Base `  K
) )  /\  ( X  ./\  Y )  .<_  X )  ->  (
( X  ./\  P
)  .\/  ( X  ./\ 
Y ) )  =  ( X  ./\  ( P  .\/  ( X  ./\  Y ) ) ) )
221, 2, 7, 15, 18, 21syl131anc 1232 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( ( X  ./\  P )  .\/  ( X 
./\  Y ) )  =  ( X  ./\  ( P  .\/  ( X 
./\  Y ) ) ) )
234, 20atbase 33253 . . . . . . . . 9  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
242, 23syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  P  e.  ( Base `  K ) )
254, 13latmcom 15359 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  P  e.  ( Base `  K
) )  ->  ( X  ./\  P )  =  ( P  ./\  X
) )
269, 7, 24, 25syl3anc 1219 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( X  ./\  P
)  =  ( P 
./\  X ) )
27 simpl23 1068 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  -.  P  .<_  X )
28 hlatl 33324 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  AtLat )
291, 28syl 16 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  K  e.  AtLat )
30 eqid 2452 . . . . . . . . . 10  |-  ( 0.
`  K )  =  ( 0. `  K
)
314, 16, 13, 30, 20atnle 33281 . . . . . . . . 9  |-  ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  ( Base `  K
) )  ->  ( -.  P  .<_  X  <->  ( P  ./\ 
X )  =  ( 0. `  K ) ) )
3229, 2, 7, 31syl3anc 1219 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( -.  P  .<_  X  <-> 
( P  ./\  X
)  =  ( 0.
`  K ) ) )
3327, 32mpbid 210 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( P  ./\  X
)  =  ( 0.
`  K ) )
3426, 33eqtrd 2493 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( X  ./\  P
)  =  ( 0.
`  K ) )
3534oveq1d 6210 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( ( X  ./\  P )  .\/  ( X 
./\  Y ) )  =  ( ( 0.
`  K )  .\/  ( X  ./\  Y ) ) )
36 simpr 461 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( X  ./\  Y
)  .<_  ( P  .\/  Q ) )
37 hlcvl 33323 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  CvLat )
381, 37syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  K  e.  CvLat )
39 simpl3 993 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( X  ./\  Y
)  e.  A )
40 simpl22 1067 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  Q  e.  A )
41 breq1 4398 . . . . . . . . . . . 12  |-  ( P  =  ( X  ./\  Y )  ->  ( P  .<_  X  <->  ( X  ./\  Y )  .<_  X )
)
4218, 41syl5ibrcom 222 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( P  =  ( X  ./\  Y )  ->  P  .<_  X )
)
4342necon3bd 2661 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( -.  P  .<_  X  ->  P  =/=  ( X  ./\  Y ) ) )
4427, 43mpd 15 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  P  =/=  ( X  ./\  Y ) )
4544necomd 2720 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( X  ./\  Y
)  =/=  P )
4616, 19, 20cvlatexchb1 33298 . . . . . . . 8  |-  ( ( K  e.  CvLat  /\  (
( X  ./\  Y
)  e.  A  /\  Q  e.  A  /\  P  e.  A )  /\  ( X  ./\  Y
)  =/=  P )  ->  ( ( X 
./\  Y )  .<_  ( P  .\/  Q )  <-> 
( P  .\/  ( X  ./\  Y ) )  =  ( P  .\/  Q ) ) )
4738, 39, 40, 2, 45, 46syl131anc 1232 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( ( X  ./\  Y )  .<_  ( P  .\/  Q )  <->  ( P  .\/  ( X  ./\  Y
) )  =  ( P  .\/  Q ) ) )
4836, 47mpbid 210 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( P  .\/  ( X  ./\  Y ) )  =  ( P  .\/  Q ) )
4948oveq2d 6211 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( X  ./\  ( P  .\/  ( X  ./\  Y ) ) )  =  ( X  ./\  ( P  .\/  Q ) ) )
5022, 35, 493eqtr3rd 2502 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( X  ./\  ( P  .\/  Q ) )  =  ( ( 0.
`  K )  .\/  ( X  ./\  Y ) ) )
51 hlol 33325 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  OL )
521, 51syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  ->  K  e.  OL )
534, 19, 30olj02 33190 . . . . 5  |-  ( ( K  e.  OL  /\  ( X  ./\  Y )  e.  ( Base `  K
) )  ->  (
( 0. `  K
)  .\/  ( X  ./\ 
Y ) )  =  ( X  ./\  Y
) )
5452, 15, 53syl2anc 661 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( ( 0. `  K )  .\/  ( X  ./\  Y ) )  =  ( X  ./\  Y ) )
5550, 54eqtr2d 2494 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  /\  ( X  ./\  Y )  .<_  ( P  .\/  Q ) )  -> 
( X  ./\  Y
)  =  ( X 
./\  ( P  .\/  Q ) ) )
5655ex 434 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  ( ( X 
./\  Y )  .<_  ( P  .\/  Q )  ->  ( X  ./\  Y )  =  ( X 
./\  ( P  .\/  Q ) ) ) )
57 simp11 1018 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  K  e.  HL )
5857, 8syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  K  e.  Lat )
59 simp12 1019 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  X  e.  N
)
6059, 6syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  X  e.  (
Base `  K )
)
61 simp21 1021 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  P  e.  A
)
62 simp22 1022 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  Q  e.  A
)
634, 19, 20hlatjcl 33330 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
6457, 61, 62, 63syl3anc 1219 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  ( P  .\/  Q )  e.  ( Base `  K ) )
654, 16, 13latmle2 15361 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  ( P  .\/  Q )  e.  ( Base `  K
) )  ->  ( X  ./\  ( P  .\/  Q ) )  .<_  ( P 
.\/  Q ) )
6658, 60, 64, 65syl3anc 1219 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  ( X  ./\  ( P  .\/  Q ) )  .<_  ( P  .\/  Q ) )
67 breq1 4398 . . 3  |-  ( ( X  ./\  Y )  =  ( X  ./\  ( P  .\/  Q ) )  ->  ( ( X  ./\  Y )  .<_  ( P  .\/  Q )  <-> 
( X  ./\  ( P  .\/  Q ) ) 
.<_  ( P  .\/  Q
) ) )
6866, 67syl5ibrcom 222 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  ( ( X 
./\  Y )  =  ( X  ./\  ( P  .\/  Q ) )  ->  ( X  ./\  Y )  .<_  ( P  .\/  Q ) ) )
6956, 68impbid 191 1  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  -.  P  .<_  X )  /\  ( X  ./\  Y )  e.  A )  ->  ( ( X 
./\  Y )  .<_  ( P  .\/  Q )  <-> 
( X  ./\  Y
)  =  ( X 
./\  ( P  .\/  Q ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2645   class class class wbr 4395   ` cfv 5521  (class class class)co 6195   Basecbs 14287   lecple 14359   joincjn 15228   meetcmee 15229   0.cp0 15321   Latclat 15329   OLcol 33138   Atomscatm 33227   AtLatcal 33228   CvLatclc 33229   HLchlt 33314   LLinesclln 33454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-ral 2801  df-rex 2802  df-reu 2803  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4195  df-iun 4276  df-iin 4277  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4739  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-riota 6156  df-ov 6198  df-oprab 6199  df-mpt2 6200  df-1st 6682  df-2nd 6683  df-poset 15230  df-plt 15242  df-lub 15258  df-glb 15259  df-join 15260  df-meet 15261  df-p0 15323  df-lat 15330  df-clat 15392  df-oposet 33140  df-ol 33142  df-oml 33143  df-covers 33230  df-ats 33231  df-atl 33262  df-cvlat 33286  df-hlat 33315  df-llines 33461  df-psubsp 33466  df-pmap 33467  df-padd 33759
This theorem is referenced by:  llnexchb2  33832
  Copyright terms: Public domain W3C validator