Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnexch2N Structured version   Unicode version

Theorem llnexch2N 33823
Description: Line exchange property (compare cvlatexch2 33291 for atoms). (Contributed by NM, 18-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
llnexch.l  |-  .<_  =  ( le `  K )
llnexch.j  |-  .\/  =  ( join `  K )
llnexch.m  |-  ./\  =  ( meet `  K )
llnexch.a  |-  A  =  ( Atoms `  K )
llnexch.n  |-  N  =  ( LLines `  K )
Assertion
Ref Expression
llnexch2N  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  -> 
( ( X  ./\  Y )  .<_  Z  ->  ( X  ./\  Z )  .<_  Y ) )

Proof of Theorem llnexch2N
StepHypRef Expression
1 llnexch.l . . 3  |-  .<_  =  ( le `  K )
2 llnexch.j . . 3  |-  .\/  =  ( join `  K )
3 llnexch.m . . 3  |-  ./\  =  ( meet `  K )
4 llnexch.a . . 3  |-  A  =  ( Atoms `  K )
5 llnexch.n . . 3  |-  N  =  ( LLines `  K )
61, 2, 3, 4, 5llnexchb2 33822 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  -> 
( ( X  ./\  Y )  .<_  Z  <->  ( X  ./\ 
Y )  =  ( X  ./\  Z )
) )
7 hllat 33317 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
873ad2ant1 1009 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  ->  K  e.  Lat )
9 simp21 1021 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  ->  X  e.  N )
10 eqid 2451 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
1110, 5llnbase 33462 . . . . 5  |-  ( X  e.  N  ->  X  e.  ( Base `  K
) )
129, 11syl 16 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  ->  X  e.  ( Base `  K ) )
13 simp22 1022 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  ->  Y  e.  N )
1410, 5llnbase 33462 . . . . 5  |-  ( Y  e.  N  ->  Y  e.  ( Base `  K
) )
1513, 14syl 16 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  ->  Y  e.  ( Base `  K ) )
1610, 1, 3latmle2 15358 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  ( X  ./\  Y )  .<_  Y )
178, 12, 15, 16syl3anc 1219 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  -> 
( X  ./\  Y
)  .<_  Y )
18 breq1 4396 . . 3  |-  ( ( X  ./\  Y )  =  ( X  ./\  Z )  ->  ( ( X  ./\  Y )  .<_  Y 
<->  ( X  ./\  Z
)  .<_  Y ) )
1917, 18syl5ibcom 220 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  -> 
( ( X  ./\  Y )  =  ( X 
./\  Z )  -> 
( X  ./\  Z
)  .<_  Y ) )
206, 19sylbid 215 1  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  Z  e.  N
)  /\  ( ( X  ./\  Y )  e.  A  /\  X  =/= 
Z ) )  -> 
( ( X  ./\  Y )  .<_  Z  ->  ( X  ./\  Z )  .<_  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2644   class class class wbr 4393   ` cfv 5519  (class class class)co 6193   Basecbs 14285   lecple 14356   joincjn 15225   meetcmee 15226   Latclat 15326   Atomscatm 33217   HLchlt 33304   LLinesclln 33444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-op 3985  df-uni 4193  df-iun 4274  df-iin 4275  df-br 4394  df-opab 4452  df-mpt 4453  df-id 4737  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-1st 6680  df-2nd 6681  df-poset 15227  df-plt 15239  df-lub 15255  df-glb 15256  df-join 15257  df-meet 15258  df-p0 15320  df-lat 15327  df-clat 15389  df-oposet 33130  df-ol 33132  df-oml 33133  df-covers 33220  df-ats 33221  df-atl 33252  df-cvlat 33276  df-hlat 33305  df-llines 33451  df-psubsp 33456  df-pmap 33457  df-padd 33749
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator