Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrval Structured version   Unicode version

Theorem lkrval 33041
Description: Value of the kernel of a functional. (Contributed by NM, 15-Apr-2014.)
Hypotheses
Ref Expression
lkrfval.d  |-  D  =  (Scalar `  W )
lkrfval.o  |-  .0.  =  ( 0g `  D )
lkrfval.f  |-  F  =  (LFnl `  W )
lkrfval.k  |-  K  =  (LKer `  W )
Assertion
Ref Expression
lkrval  |-  ( ( W  e.  X  /\  G  e.  F )  ->  ( K `  G
)  =  ( `' G " {  .0.  } ) )

Proof of Theorem lkrval
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 lkrfval.d . . . 4  |-  D  =  (Scalar `  W )
2 lkrfval.o . . . 4  |-  .0.  =  ( 0g `  D )
3 lkrfval.f . . . 4  |-  F  =  (LFnl `  W )
4 lkrfval.k . . . 4  |-  K  =  (LKer `  W )
51, 2, 3, 4lkrfval 33040 . . 3  |-  ( W  e.  X  ->  K  =  ( f  e.  F  |->  ( `' f
" {  .0.  }
) ) )
65fveq1d 5793 . 2  |-  ( W  e.  X  ->  ( K `  G )  =  ( ( f  e.  F  |->  ( `' f " {  .0.  } ) ) `  G
) )
7 cnvexg 6626 . . . 4  |-  ( G  e.  F  ->  `' G  e.  _V )
8 imaexg 6617 . . . 4  |-  ( `' G  e.  _V  ->  ( `' G " {  .0.  } )  e.  _V )
97, 8syl 16 . . 3  |-  ( G  e.  F  ->  ( `' G " {  .0.  } )  e.  _V )
10 cnveq 5113 . . . . 5  |-  ( f  =  G  ->  `' f  =  `' G
)
1110imaeq1d 5268 . . . 4  |-  ( f  =  G  ->  ( `' f " {  .0.  } )  =  ( `' G " {  .0.  } ) )
12 eqid 2451 . . . 4  |-  ( f  e.  F  |->  ( `' f " {  .0.  } ) )  =  ( f  e.  F  |->  ( `' f " {  .0.  } ) )
1311, 12fvmptg 5873 . . 3  |-  ( ( G  e.  F  /\  ( `' G " {  .0.  } )  e.  _V )  ->  ( ( f  e.  F  |->  ( `' f
" {  .0.  }
) ) `  G
)  =  ( `' G " {  .0.  } ) )
149, 13mpdan 668 . 2  |-  ( G  e.  F  ->  (
( f  e.  F  |->  ( `' f " {  .0.  } ) ) `
 G )  =  ( `' G " {  .0.  } ) )
156, 14sylan9eq 2512 1  |-  ( ( W  e.  X  /\  G  e.  F )  ->  ( K `  G
)  =  ( `' G " {  .0.  } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   _Vcvv 3070   {csn 3977    |-> cmpt 4450   `'ccnv 4939   "cima 4943   ` cfv 5518  Scalarcsca 14345   0gc0g 14482  LFnlclfn 33010  LKerclk 33038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-op 3984  df-uni 4192  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-id 4736  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-lkr 33039
This theorem is referenced by:  ellkr  33042  lkr0f  33047
  Copyright terms: Public domain W3C validator