Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrpssN Structured version   Unicode version

Theorem lkrpssN 32402
Description: Proper subset relation between kernels. (Contributed by NM, 16-Feb-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
lkrpss.f  |-  F  =  (LFnl `  W )
lkrpss.k  |-  K  =  (LKer `  W )
lkrpss.d  |-  D  =  (LDual `  W )
lkrpss.o  |-  .0.  =  ( 0g `  D )
lkrpss.w  |-  ( ph  ->  W  e.  LVec )
lkrpss.g  |-  ( ph  ->  G  e.  F )
lkrpss.h  |-  ( ph  ->  H  e.  F )
Assertion
Ref Expression
lkrpssN  |-  ( ph  ->  ( ( K `  G )  C.  ( K `  H )  <->  ( G  =/=  .0.  /\  H  =  .0.  )
) )

Proof of Theorem lkrpssN
StepHypRef Expression
1 df-pss 3332 . . 3  |-  ( ( K `  G ) 
C.  ( K `  H )  <->  ( ( K `  G )  C_  ( K `  H
)  /\  ( K `  G )  =/=  ( K `  H )
) )
2 simpr 458 . . . . . . . 8  |-  ( (
ph  /\  ( K `  G )  C.  ( K `  H )
)  ->  ( K `  G )  C.  ( K `  H )
)
3 eqid 2433 . . . . . . . . . 10  |-  ( Base `  W )  =  (
Base `  W )
4 lkrpss.f . . . . . . . . . 10  |-  F  =  (LFnl `  W )
5 lkrpss.k . . . . . . . . . 10  |-  K  =  (LKer `  W )
6 lkrpss.w . . . . . . . . . . 11  |-  ( ph  ->  W  e.  LVec )
7 lveclmod 17109 . . . . . . . . . . 11  |-  ( W  e.  LVec  ->  W  e. 
LMod )
86, 7syl 16 . . . . . . . . . 10  |-  ( ph  ->  W  e.  LMod )
9 lkrpss.h . . . . . . . . . 10  |-  ( ph  ->  H  e.  F )
103, 4, 5, 8, 9lkrssv 32335 . . . . . . . . 9  |-  ( ph  ->  ( K `  H
)  C_  ( Base `  W ) )
1110adantr 462 . . . . . . . 8  |-  ( (
ph  /\  ( K `  G )  C.  ( K `  H )
)  ->  ( K `  H )  C_  ( Base `  W ) )
122, 11psssstrd 3453 . . . . . . 7  |-  ( (
ph  /\  ( K `  G )  C.  ( K `  H )
)  ->  ( K `  G )  C.  ( Base `  W ) )
1312pssned 3442 . . . . . 6  |-  ( (
ph  /\  ( K `  G )  C.  ( K `  H )
)  ->  ( K `  G )  =/=  ( Base `  W ) )
141, 13sylan2br 473 . . . . 5  |-  ( (
ph  /\  ( ( K `  G )  C_  ( K `  H
)  /\  ( K `  G )  =/=  ( K `  H )
) )  ->  ( K `  G )  =/=  ( Base `  W
) )
15 simplr 747 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( K `  G )  C_  ( K `  H
) )  /\  ( K `  H )  e.  (LSHyp `  W )
)  ->  ( K `  G )  C_  ( K `  H )
)
16 eqid 2433 . . . . . . . . . . 11  |-  (LSHyp `  W )  =  (LSHyp `  W )
176ad2antrr 718 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( K `  G )  C_  ( K `  H
) )  /\  ( K `  H )  e.  (LSHyp `  W )
)  ->  W  e.  LVec )
18 simpr 458 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( K `  G ) 
C_  ( K `  H ) )  /\  ( K `  H )  e.  (LSHyp `  W
) )  /\  ( K `  G )  e.  (LSHyp `  W )
)  ->  ( K `  G )  e.  (LSHyp `  W ) )
19 simplr 747 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( K `  G ) 
C_  ( K `  H ) )  /\  ( K `  H )  e.  (LSHyp `  W
) )  /\  ( K `  G )  =  ( Base `  W
) )  ->  ( K `  H )  e.  (LSHyp `  W )
)
2010ad3antrrr 722 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( K `  G ) 
C_  ( K `  H ) )  /\  ( K `  H )  e.  (LSHyp `  W
) )  /\  ( K `  G )  =  ( Base `  W
) )  ->  ( K `  H )  C_  ( Base `  W
) )
21 simpr 458 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( K `  G ) 
C_  ( K `  H ) )  /\  ( K `  H )  e.  (LSHyp `  W
) )  /\  ( K `  G )  =  ( Base `  W
) )  ->  ( K `  G )  =  ( Base `  W
) )
22 simpllr 751 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( K `  G ) 
C_  ( K `  H ) )  /\  ( K `  H )  e.  (LSHyp `  W
) )  /\  ( K `  G )  =  ( Base `  W
) )  ->  ( K `  G )  C_  ( K `  H
) )
2321, 22eqsstr3d 3379 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( K `  G ) 
C_  ( K `  H ) )  /\  ( K `  H )  e.  (LSHyp `  W
) )  /\  ( K `  G )  =  ( Base `  W
) )  ->  ( Base `  W )  C_  ( K `  H ) )
2420, 23eqssd 3361 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( K `  G ) 
C_  ( K `  H ) )  /\  ( K `  H )  e.  (LSHyp `  W
) )  /\  ( K `  G )  =  ( Base `  W
) )  ->  ( K `  H )  =  ( Base `  W
) )
253, 16, 4, 5, 6, 9lkrshp4 32347 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( K `  H )  =/=  ( Base `  W )  <->  ( K `  H )  e.  (LSHyp `  W ) ) )
2625ad3antrrr 722 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( K `  G ) 
C_  ( K `  H ) )  /\  ( K `  H )  e.  (LSHyp `  W
) )  /\  ( K `  G )  =  ( Base `  W
) )  ->  (
( K `  H
)  =/=  ( Base `  W )  <->  ( K `  H )  e.  (LSHyp `  W ) ) )
2726necon1bbid 2655 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( K `  G ) 
C_  ( K `  H ) )  /\  ( K `  H )  e.  (LSHyp `  W
) )  /\  ( K `  G )  =  ( Base `  W
) )  ->  ( -.  ( K `  H
)  e.  (LSHyp `  W )  <->  ( K `  H )  =  (
Base `  W )
) )
2824, 27mpbird 232 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( K `  G ) 
C_  ( K `  H ) )  /\  ( K `  H )  e.  (LSHyp `  W
) )  /\  ( K `  G )  =  ( Base `  W
) )  ->  -.  ( K `  H )  e.  (LSHyp `  W
) )
2919, 28pm2.21dd 174 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( K `  G ) 
C_  ( K `  H ) )  /\  ( K `  H )  e.  (LSHyp `  W
) )  /\  ( K `  G )  =  ( Base `  W
) )  ->  ( K `  G )  e.  (LSHyp `  W )
)
30 lkrpss.g . . . . . . . . . . . . . 14  |-  ( ph  ->  G  e.  F )
313, 16, 4, 5, 6, 30lkrshpor 32346 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( K `  G )  e.  (LSHyp `  W )  \/  ( K `  G )  =  ( Base `  W
) ) )
3231ad2antrr 718 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K `  G )  C_  ( K `  H
) )  /\  ( K `  H )  e.  (LSHyp `  W )
)  ->  ( ( K `  G )  e.  (LSHyp `  W )  \/  ( K `  G
)  =  ( Base `  W ) ) )
3318, 29, 32mpjaodan 777 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( K `  G )  C_  ( K `  H
) )  /\  ( K `  H )  e.  (LSHyp `  W )
)  ->  ( K `  G )  e.  (LSHyp `  W ) )
34 simpr 458 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( K `  G )  C_  ( K `  H
) )  /\  ( K `  H )  e.  (LSHyp `  W )
)  ->  ( K `  H )  e.  (LSHyp `  W ) )
3516, 17, 33, 34lshpcmp 32227 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( K `  G )  C_  ( K `  H
) )  /\  ( K `  H )  e.  (LSHyp `  W )
)  ->  ( ( K `  G )  C_  ( K `  H
)  <->  ( K `  G )  =  ( K `  H ) ) )
3615, 35mpbid 210 . . . . . . . . 9  |-  ( ( ( ph  /\  ( K `  G )  C_  ( K `  H
) )  /\  ( K `  H )  e.  (LSHyp `  W )
)  ->  ( K `  G )  =  ( K `  H ) )
3736ex 434 . . . . . . . 8  |-  ( (
ph  /\  ( K `  G )  C_  ( K `  H )
)  ->  ( ( K `  H )  e.  (LSHyp `  W )  ->  ( K `  G
)  =  ( K `
 H ) ) )
3837necon3ad 2634 . . . . . . 7  |-  ( (
ph  /\  ( K `  G )  C_  ( K `  H )
)  ->  ( ( K `  G )  =/=  ( K `  H
)  ->  -.  ( K `  H )  e.  (LSHyp `  W )
) )
3938impr 614 . . . . . 6  |-  ( (
ph  /\  ( ( K `  G )  C_  ( K `  H
)  /\  ( K `  G )  =/=  ( K `  H )
) )  ->  -.  ( K `  H )  e.  (LSHyp `  W
) )
4025necon1bbid 2655 . . . . . . 7  |-  ( ph  ->  ( -.  ( K `
 H )  e.  (LSHyp `  W )  <->  ( K `  H )  =  ( Base `  W
) ) )
4140adantr 462 . . . . . 6  |-  ( (
ph  /\  ( ( K `  G )  C_  ( K `  H
)  /\  ( K `  G )  =/=  ( K `  H )
) )  ->  ( -.  ( K `  H
)  e.  (LSHyp `  W )  <->  ( K `  H )  =  (
Base `  W )
) )
4239, 41mpbid 210 . . . . 5  |-  ( (
ph  /\  ( ( K `  G )  C_  ( K `  H
)  /\  ( K `  G )  =/=  ( K `  H )
) )  ->  ( K `  H )  =  ( Base `  W
) )
4314, 42jca 529 . . . 4  |-  ( (
ph  /\  ( ( K `  G )  C_  ( K `  H
)  /\  ( K `  G )  =/=  ( K `  H )
) )  ->  (
( K `  G
)  =/=  ( Base `  W )  /\  ( K `  H )  =  ( Base `  W
) ) )
443, 4, 5, 8, 30lkrssv 32335 . . . . . . 7  |-  ( ph  ->  ( K `  G
)  C_  ( Base `  W ) )
4544adantr 462 . . . . . 6  |-  ( (
ph  /\  ( ( K `  G )  =/=  ( Base `  W
)  /\  ( K `  H )  =  (
Base `  W )
) )  ->  ( K `  G )  C_  ( Base `  W
) )
46 simprr 749 . . . . . . 7  |-  ( (
ph  /\  ( ( K `  G )  =/=  ( Base `  W
)  /\  ( K `  H )  =  (
Base `  W )
) )  ->  ( K `  H )  =  ( Base `  W
) )
4746eqcomd 2438 . . . . . 6  |-  ( (
ph  /\  ( ( K `  G )  =/=  ( Base `  W
)  /\  ( K `  H )  =  (
Base `  W )
) )  ->  ( Base `  W )  =  ( K `  H
) )
4845, 47sseqtrd 3380 . . . . 5  |-  ( (
ph  /\  ( ( K `  G )  =/=  ( Base `  W
)  /\  ( K `  H )  =  (
Base `  W )
) )  ->  ( K `  G )  C_  ( K `  H
) )
49 simprl 748 . . . . . 6  |-  ( (
ph  /\  ( ( K `  G )  =/=  ( Base `  W
)  /\  ( K `  H )  =  (
Base `  W )
) )  ->  ( K `  G )  =/=  ( Base `  W
) )
5049, 47neeqtrd 2620 . . . . 5  |-  ( (
ph  /\  ( ( K `  G )  =/=  ( Base `  W
)  /\  ( K `  H )  =  (
Base `  W )
) )  ->  ( K `  G )  =/=  ( K `  H
) )
5148, 50jca 529 . . . 4  |-  ( (
ph  /\  ( ( K `  G )  =/=  ( Base `  W
)  /\  ( K `  H )  =  (
Base `  W )
) )  ->  (
( K `  G
)  C_  ( K `  H )  /\  ( K `  G )  =/=  ( K `  H
) ) )
5243, 51impbida 821 . . 3  |-  ( ph  ->  ( ( ( K `
 G )  C_  ( K `  H )  /\  ( K `  G )  =/=  ( K `  H )
)  <->  ( ( K `
 G )  =/=  ( Base `  W
)  /\  ( K `  H )  =  (
Base `  W )
) ) )
531, 52syl5bb 257 . 2  |-  ( ph  ->  ( ( K `  G )  C.  ( K `  H )  <->  ( ( K `  G
)  =/=  ( Base `  W )  /\  ( K `  H )  =  ( Base `  W
) ) ) )
54 lkrpss.d . . . . 5  |-  D  =  (LDual `  W )
55 lkrpss.o . . . . 5  |-  .0.  =  ( 0g `  D )
563, 4, 5, 54, 55, 8, 30lkr0f2 32400 . . . 4  |-  ( ph  ->  ( ( K `  G )  =  (
Base `  W )  <->  G  =  .0.  ) )
5756necon3bid 2633 . . 3  |-  ( ph  ->  ( ( K `  G )  =/=  ( Base `  W )  <->  G  =/=  .0.  ) )
583, 4, 5, 54, 55, 8, 9lkr0f2 32400 . . 3  |-  ( ph  ->  ( ( K `  H )  =  (
Base `  W )  <->  H  =  .0.  ) )
5957, 58anbi12d 703 . 2  |-  ( ph  ->  ( ( ( K `
 G )  =/=  ( Base `  W
)  /\  ( K `  H )  =  (
Base `  W )
)  <->  ( G  =/= 
.0.  /\  H  =  .0.  ) ) )
6053, 59bitrd 253 1  |-  ( ph  ->  ( ( K `  G )  C.  ( K `  H )  <->  ( G  =/=  .0.  /\  H  =  .0.  )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1362    e. wcel 1755    =/= wne 2596    C_ wss 3316    C. wpss 3317   ` cfv 5406   Basecbs 14157   0gc0g 14361   LModclmod 16872   LVecclvec 17105  LSHypclsh 32214  LFnlclfn 32296  LKerclk 32324  LDualcld 32362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-of 6309  df-om 6466  df-1st 6566  df-2nd 6567  df-tpos 6734  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-map 7204  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-5 10371  df-6 10372  df-n0 10568  df-z 10635  df-uz 10850  df-fz 11425  df-struct 14159  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-ress 14164  df-plusg 14234  df-mulr 14235  df-sca 14237  df-vsca 14238  df-0g 14363  df-mnd 15398  df-submnd 15448  df-grp 15525  df-minusg 15526  df-sbg 15527  df-subg 15658  df-cntz 15815  df-lsm 16115  df-cmn 16259  df-abl 16260  df-mgp 16566  df-rng 16580  df-ur 16582  df-oppr 16649  df-dvdsr 16667  df-unit 16668  df-invr 16698  df-drng 16758  df-lmod 16874  df-lss 16936  df-lsp 16975  df-lvec 17106  df-lshyp 32216  df-lfl 32297  df-lkr 32325  df-ldual 32363
This theorem is referenced by:  lkrss2N  32408  lkreqN  32409
  Copyright terms: Public domain W3C validator