Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrpssN Structured version   Unicode version

Theorem lkrpssN 32811
Description: Proper subset relation between kernels. (Contributed by NM, 16-Feb-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
lkrpss.f  |-  F  =  (LFnl `  W )
lkrpss.k  |-  K  =  (LKer `  W )
lkrpss.d  |-  D  =  (LDual `  W )
lkrpss.o  |-  .0.  =  ( 0g `  D )
lkrpss.w  |-  ( ph  ->  W  e.  LVec )
lkrpss.g  |-  ( ph  ->  G  e.  F )
lkrpss.h  |-  ( ph  ->  H  e.  F )
Assertion
Ref Expression
lkrpssN  |-  ( ph  ->  ( ( K `  G )  C.  ( K `  H )  <->  ( G  =/=  .0.  /\  H  =  .0.  )
) )

Proof of Theorem lkrpssN
StepHypRef Expression
1 df-pss 3347 . . 3  |-  ( ( K `  G ) 
C.  ( K `  H )  <->  ( ( K `  G )  C_  ( K `  H
)  /\  ( K `  G )  =/=  ( K `  H )
) )
2 simpr 461 . . . . . . . 8  |-  ( (
ph  /\  ( K `  G )  C.  ( K `  H )
)  ->  ( K `  G )  C.  ( K `  H )
)
3 eqid 2443 . . . . . . . . . 10  |-  ( Base `  W )  =  (
Base `  W )
4 lkrpss.f . . . . . . . . . 10  |-  F  =  (LFnl `  W )
5 lkrpss.k . . . . . . . . . 10  |-  K  =  (LKer `  W )
6 lkrpss.w . . . . . . . . . . 11  |-  ( ph  ->  W  e.  LVec )
7 lveclmod 17190 . . . . . . . . . . 11  |-  ( W  e.  LVec  ->  W  e. 
LMod )
86, 7syl 16 . . . . . . . . . 10  |-  ( ph  ->  W  e.  LMod )
9 lkrpss.h . . . . . . . . . 10  |-  ( ph  ->  H  e.  F )
103, 4, 5, 8, 9lkrssv 32744 . . . . . . . . 9  |-  ( ph  ->  ( K `  H
)  C_  ( Base `  W ) )
1110adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( K `  G )  C.  ( K `  H )
)  ->  ( K `  H )  C_  ( Base `  W ) )
122, 11psssstrd 3468 . . . . . . 7  |-  ( (
ph  /\  ( K `  G )  C.  ( K `  H )
)  ->  ( K `  G )  C.  ( Base `  W ) )
1312pssned 3457 . . . . . 6  |-  ( (
ph  /\  ( K `  G )  C.  ( K `  H )
)  ->  ( K `  G )  =/=  ( Base `  W ) )
141, 13sylan2br 476 . . . . 5  |-  ( (
ph  /\  ( ( K `  G )  C_  ( K `  H
)  /\  ( K `  G )  =/=  ( K `  H )
) )  ->  ( K `  G )  =/=  ( Base `  W
) )
15 simplr 754 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( K `  G )  C_  ( K `  H
) )  /\  ( K `  H )  e.  (LSHyp `  W )
)  ->  ( K `  G )  C_  ( K `  H )
)
16 eqid 2443 . . . . . . . . . . 11  |-  (LSHyp `  W )  =  (LSHyp `  W )
176ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( K `  G )  C_  ( K `  H
) )  /\  ( K `  H )  e.  (LSHyp `  W )
)  ->  W  e.  LVec )
18 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( K `  G ) 
C_  ( K `  H ) )  /\  ( K `  H )  e.  (LSHyp `  W
) )  /\  ( K `  G )  e.  (LSHyp `  W )
)  ->  ( K `  G )  e.  (LSHyp `  W ) )
19 simplr 754 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( K `  G ) 
C_  ( K `  H ) )  /\  ( K `  H )  e.  (LSHyp `  W
) )  /\  ( K `  G )  =  ( Base `  W
) )  ->  ( K `  H )  e.  (LSHyp `  W )
)
2010ad3antrrr 729 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( K `  G ) 
C_  ( K `  H ) )  /\  ( K `  H )  e.  (LSHyp `  W
) )  /\  ( K `  G )  =  ( Base `  W
) )  ->  ( K `  H )  C_  ( Base `  W
) )
21 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( K `  G ) 
C_  ( K `  H ) )  /\  ( K `  H )  e.  (LSHyp `  W
) )  /\  ( K `  G )  =  ( Base `  W
) )  ->  ( K `  G )  =  ( Base `  W
) )
22 simpllr 758 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( K `  G ) 
C_  ( K `  H ) )  /\  ( K `  H )  e.  (LSHyp `  W
) )  /\  ( K `  G )  =  ( Base `  W
) )  ->  ( K `  G )  C_  ( K `  H
) )
2321, 22eqsstr3d 3394 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( K `  G ) 
C_  ( K `  H ) )  /\  ( K `  H )  e.  (LSHyp `  W
) )  /\  ( K `  G )  =  ( Base `  W
) )  ->  ( Base `  W )  C_  ( K `  H ) )
2420, 23eqssd 3376 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( K `  G ) 
C_  ( K `  H ) )  /\  ( K `  H )  e.  (LSHyp `  W
) )  /\  ( K `  G )  =  ( Base `  W
) )  ->  ( K `  H )  =  ( Base `  W
) )
253, 16, 4, 5, 6, 9lkrshp4 32756 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( K `  H )  =/=  ( Base `  W )  <->  ( K `  H )  e.  (LSHyp `  W ) ) )
2625ad3antrrr 729 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( K `  G ) 
C_  ( K `  H ) )  /\  ( K `  H )  e.  (LSHyp `  W
) )  /\  ( K `  G )  =  ( Base `  W
) )  ->  (
( K `  H
)  =/=  ( Base `  W )  <->  ( K `  H )  e.  (LSHyp `  W ) ) )
2726necon1bbid 2668 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( K `  G ) 
C_  ( K `  H ) )  /\  ( K `  H )  e.  (LSHyp `  W
) )  /\  ( K `  G )  =  ( Base `  W
) )  ->  ( -.  ( K `  H
)  e.  (LSHyp `  W )  <->  ( K `  H )  =  (
Base `  W )
) )
2824, 27mpbird 232 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( K `  G ) 
C_  ( K `  H ) )  /\  ( K `  H )  e.  (LSHyp `  W
) )  /\  ( K `  G )  =  ( Base `  W
) )  ->  -.  ( K `  H )  e.  (LSHyp `  W
) )
2919, 28pm2.21dd 174 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( K `  G ) 
C_  ( K `  H ) )  /\  ( K `  H )  e.  (LSHyp `  W
) )  /\  ( K `  G )  =  ( Base `  W
) )  ->  ( K `  G )  e.  (LSHyp `  W )
)
30 lkrpss.g . . . . . . . . . . . . . 14  |-  ( ph  ->  G  e.  F )
313, 16, 4, 5, 6, 30lkrshpor 32755 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( K `  G )  e.  (LSHyp `  W )  \/  ( K `  G )  =  ( Base `  W
) ) )
3231ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K `  G )  C_  ( K `  H
) )  /\  ( K `  H )  e.  (LSHyp `  W )
)  ->  ( ( K `  G )  e.  (LSHyp `  W )  \/  ( K `  G
)  =  ( Base `  W ) ) )
3318, 29, 32mpjaodan 784 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( K `  G )  C_  ( K `  H
) )  /\  ( K `  H )  e.  (LSHyp `  W )
)  ->  ( K `  G )  e.  (LSHyp `  W ) )
34 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( K `  G )  C_  ( K `  H
) )  /\  ( K `  H )  e.  (LSHyp `  W )
)  ->  ( K `  H )  e.  (LSHyp `  W ) )
3516, 17, 33, 34lshpcmp 32636 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( K `  G )  C_  ( K `  H
) )  /\  ( K `  H )  e.  (LSHyp `  W )
)  ->  ( ( K `  G )  C_  ( K `  H
)  <->  ( K `  G )  =  ( K `  H ) ) )
3615, 35mpbid 210 . . . . . . . . 9  |-  ( ( ( ph  /\  ( K `  G )  C_  ( K `  H
) )  /\  ( K `  H )  e.  (LSHyp `  W )
)  ->  ( K `  G )  =  ( K `  H ) )
3736ex 434 . . . . . . . 8  |-  ( (
ph  /\  ( K `  G )  C_  ( K `  H )
)  ->  ( ( K `  H )  e.  (LSHyp `  W )  ->  ( K `  G
)  =  ( K `
 H ) ) )
3837necon3ad 2647 . . . . . . 7  |-  ( (
ph  /\  ( K `  G )  C_  ( K `  H )
)  ->  ( ( K `  G )  =/=  ( K `  H
)  ->  -.  ( K `  H )  e.  (LSHyp `  W )
) )
3938impr 619 . . . . . 6  |-  ( (
ph  /\  ( ( K `  G )  C_  ( K `  H
)  /\  ( K `  G )  =/=  ( K `  H )
) )  ->  -.  ( K `  H )  e.  (LSHyp `  W
) )
4025necon1bbid 2668 . . . . . . 7  |-  ( ph  ->  ( -.  ( K `
 H )  e.  (LSHyp `  W )  <->  ( K `  H )  =  ( Base `  W
) ) )
4140adantr 465 . . . . . 6  |-  ( (
ph  /\  ( ( K `  G )  C_  ( K `  H
)  /\  ( K `  G )  =/=  ( K `  H )
) )  ->  ( -.  ( K `  H
)  e.  (LSHyp `  W )  <->  ( K `  H )  =  (
Base `  W )
) )
4239, 41mpbid 210 . . . . 5  |-  ( (
ph  /\  ( ( K `  G )  C_  ( K `  H
)  /\  ( K `  G )  =/=  ( K `  H )
) )  ->  ( K `  H )  =  ( Base `  W
) )
4314, 42jca 532 . . . 4  |-  ( (
ph  /\  ( ( K `  G )  C_  ( K `  H
)  /\  ( K `  G )  =/=  ( K `  H )
) )  ->  (
( K `  G
)  =/=  ( Base `  W )  /\  ( K `  H )  =  ( Base `  W
) ) )
443, 4, 5, 8, 30lkrssv 32744 . . . . . . 7  |-  ( ph  ->  ( K `  G
)  C_  ( Base `  W ) )
4544adantr 465 . . . . . 6  |-  ( (
ph  /\  ( ( K `  G )  =/=  ( Base `  W
)  /\  ( K `  H )  =  (
Base `  W )
) )  ->  ( K `  G )  C_  ( Base `  W
) )
46 simprr 756 . . . . . . 7  |-  ( (
ph  /\  ( ( K `  G )  =/=  ( Base `  W
)  /\  ( K `  H )  =  (
Base `  W )
) )  ->  ( K `  H )  =  ( Base `  W
) )
4746eqcomd 2448 . . . . . 6  |-  ( (
ph  /\  ( ( K `  G )  =/=  ( Base `  W
)  /\  ( K `  H )  =  (
Base `  W )
) )  ->  ( Base `  W )  =  ( K `  H
) )
4845, 47sseqtrd 3395 . . . . 5  |-  ( (
ph  /\  ( ( K `  G )  =/=  ( Base `  W
)  /\  ( K `  H )  =  (
Base `  W )
) )  ->  ( K `  G )  C_  ( K `  H
) )
49 simprl 755 . . . . . 6  |-  ( (
ph  /\  ( ( K `  G )  =/=  ( Base `  W
)  /\  ( K `  H )  =  (
Base `  W )
) )  ->  ( K `  G )  =/=  ( Base `  W
) )
5049, 47neeqtrd 2633 . . . . 5  |-  ( (
ph  /\  ( ( K `  G )  =/=  ( Base `  W
)  /\  ( K `  H )  =  (
Base `  W )
) )  ->  ( K `  G )  =/=  ( K `  H
) )
5148, 50jca 532 . . . 4  |-  ( (
ph  /\  ( ( K `  G )  =/=  ( Base `  W
)  /\  ( K `  H )  =  (
Base `  W )
) )  ->  (
( K `  G
)  C_  ( K `  H )  /\  ( K `  G )  =/=  ( K `  H
) ) )
5243, 51impbida 828 . . 3  |-  ( ph  ->  ( ( ( K `
 G )  C_  ( K `  H )  /\  ( K `  G )  =/=  ( K `  H )
)  <->  ( ( K `
 G )  =/=  ( Base `  W
)  /\  ( K `  H )  =  (
Base `  W )
) ) )
531, 52syl5bb 257 . 2  |-  ( ph  ->  ( ( K `  G )  C.  ( K `  H )  <->  ( ( K `  G
)  =/=  ( Base `  W )  /\  ( K `  H )  =  ( Base `  W
) ) ) )
54 lkrpss.d . . . . 5  |-  D  =  (LDual `  W )
55 lkrpss.o . . . . 5  |-  .0.  =  ( 0g `  D )
563, 4, 5, 54, 55, 8, 30lkr0f2 32809 . . . 4  |-  ( ph  ->  ( ( K `  G )  =  (
Base `  W )  <->  G  =  .0.  ) )
5756necon3bid 2646 . . 3  |-  ( ph  ->  ( ( K `  G )  =/=  ( Base `  W )  <->  G  =/=  .0.  ) )
583, 4, 5, 54, 55, 8, 9lkr0f2 32809 . . 3  |-  ( ph  ->  ( ( K `  H )  =  (
Base `  W )  <->  H  =  .0.  ) )
5957, 58anbi12d 710 . 2  |-  ( ph  ->  ( ( ( K `
 G )  =/=  ( Base `  W
)  /\  ( K `  H )  =  (
Base `  W )
)  <->  ( G  =/= 
.0.  /\  H  =  .0.  ) ) )
6053, 59bitrd 253 1  |-  ( ph  ->  ( ( K `  G )  C.  ( K `  H )  <->  ( G  =/=  .0.  /\  H  =  .0.  )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2609    C_ wss 3331    C. wpss 3332   ` cfv 5421   Basecbs 14177   0gc0g 14381   LModclmod 16951   LVecclvec 17186  LSHypclsh 32623  LFnlclfn 32705  LKerclk 32733  LDualcld 32771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375  ax-cnex 9341  ax-resscn 9342  ax-1cn 9343  ax-icn 9344  ax-addcl 9345  ax-addrcl 9346  ax-mulcl 9347  ax-mulrcl 9348  ax-mulcom 9349  ax-addass 9350  ax-mulass 9351  ax-distr 9352  ax-i2m1 9353  ax-1ne0 9354  ax-1rid 9355  ax-rnegex 9356  ax-rrecex 9357  ax-cnre 9358  ax-pre-lttri 9359  ax-pre-lttrn 9360  ax-pre-ltadd 9361  ax-pre-mulgt0 9362
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-nel 2612  df-ral 2723  df-rex 2724  df-reu 2725  df-rmo 2726  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-pss 3347  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-tp 3885  df-op 3887  df-uni 4095  df-int 4132  df-iun 4176  df-br 4296  df-opab 4354  df-mpt 4355  df-tr 4389  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-riota 6055  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-of 6323  df-om 6480  df-1st 6580  df-2nd 6581  df-tpos 6748  df-recs 6835  df-rdg 6869  df-1o 6923  df-oadd 6927  df-er 7104  df-map 7219  df-en 7314  df-dom 7315  df-sdom 7316  df-fin 7317  df-pnf 9423  df-mnf 9424  df-xr 9425  df-ltxr 9426  df-le 9427  df-sub 9600  df-neg 9601  df-nn 10326  df-2 10383  df-3 10384  df-4 10385  df-5 10386  df-6 10387  df-n0 10583  df-z 10650  df-uz 10865  df-fz 11441  df-struct 14179  df-ndx 14180  df-slot 14181  df-base 14182  df-sets 14183  df-ress 14184  df-plusg 14254  df-mulr 14255  df-sca 14257  df-vsca 14258  df-0g 14383  df-mnd 15418  df-submnd 15468  df-grp 15548  df-minusg 15549  df-sbg 15550  df-subg 15681  df-cntz 15838  df-lsm 16138  df-cmn 16282  df-abl 16283  df-mgp 16595  df-ur 16607  df-rng 16650  df-oppr 16718  df-dvdsr 16736  df-unit 16737  df-invr 16767  df-drng 16837  df-lmod 16953  df-lss 17017  df-lsp 17056  df-lvec 17187  df-lshyp 32625  df-lfl 32706  df-lkr 32734  df-ldual 32772
This theorem is referenced by:  lkrss2N  32817  lkreqN  32818
  Copyright terms: Public domain W3C validator