Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrlss Structured version   Unicode version

Theorem lkrlss 33059
Description: The kernel of a linear functional is a subspace. (nlelshi 25611 analog.) (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lkrlss.f  |-  F  =  (LFnl `  W )
lkrlss.k  |-  K  =  (LKer `  W )
lkrlss.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lkrlss  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  ( K `  G )  e.  S )

Proof of Theorem lkrlss
Dummy variables  x  r  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2452 . . . 4  |-  ( Base `  W )  =  (
Base `  W )
2 eqid 2452 . . . 4  |-  (Scalar `  W )  =  (Scalar `  W )
3 eqid 2452 . . . 4  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
4 lkrlss.f . . . 4  |-  F  =  (LFnl `  W )
5 lkrlss.k . . . 4  |-  K  =  (LKer `  W )
61, 2, 3, 4, 5lkrval2 33054 . . 3  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  ( K `  G )  =  { x  e.  (
Base `  W )  |  ( G `  x )  =  ( 0g `  (Scalar `  W ) ) } )
7 ssrab2 3540 . . 3  |-  { x  e.  ( Base `  W
)  |  ( G `
 x )  =  ( 0g `  (Scalar `  W ) ) } 
C_  ( Base `  W
)
86, 7syl6eqss 3509 . 2  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  ( K `  G )  C_  ( Base `  W
) )
9 eqid 2452 . . . . . 6  |-  ( 0g
`  W )  =  ( 0g `  W
)
101, 9lmod0vcl 17095 . . . . 5  |-  ( W  e.  LMod  ->  ( 0g
`  W )  e.  ( Base `  W
) )
1110adantr 465 . . . 4  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  ( 0g `  W )  e.  ( Base `  W
) )
122, 3, 9, 4lfl0 33029 . . . 4  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  ( G `  ( 0g `  W ) )  =  ( 0g `  (Scalar `  W ) ) )
131, 2, 3, 4, 5ellkr 33053 . . . 4  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  (
( 0g `  W
)  e.  ( K `
 G )  <->  ( ( 0g `  W )  e.  ( Base `  W
)  /\  ( G `  ( 0g `  W
) )  =  ( 0g `  (Scalar `  W ) ) ) ) )
1411, 12, 13mpbir2and 913 . . 3  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  ( 0g `  W )  e.  ( K `  G
) )
15 ne0i 3746 . . 3  |-  ( ( 0g `  W )  e.  ( K `  G )  ->  ( K `  G )  =/=  (/) )
1614, 15syl 16 . 2  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  ( K `  G )  =/=  (/) )
17 simplll 757 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  W  e.  LMod )
18 simplr 754 . . . . . . 7  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  r  e.  ( Base `  (Scalar `  W ) ) )
19 simpllr 758 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  G  e.  F )
20 simprl 755 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  x  e.  ( K `  G
) )
211, 4, 5lkrcl 33056 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  x  e.  ( K `  G
) )  ->  x  e.  ( Base `  W
) )
2217, 19, 20, 21syl3anc 1219 . . . . . . 7  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  x  e.  ( Base `  W
) )
23 eqid 2452 . . . . . . . 8  |-  ( .s
`  W )  =  ( .s `  W
)
24 eqid 2452 . . . . . . . 8  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
251, 2, 23, 24lmodvscl 17083 . . . . . . 7  |-  ( ( W  e.  LMod  /\  r  e.  ( Base `  (Scalar `  W ) )  /\  x  e.  ( Base `  W ) )  -> 
( r ( .s
`  W ) x )  e.  ( Base `  W ) )
2617, 18, 22, 25syl3anc 1219 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  (
r ( .s `  W ) x )  e.  ( Base `  W
) )
27 simprr 756 . . . . . . 7  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  y  e.  ( K `  G
) )
281, 4, 5lkrcl 33056 . . . . . . 7  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  y  e.  ( K `  G
) )  ->  y  e.  ( Base `  W
) )
2917, 19, 27, 28syl3anc 1219 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  y  e.  ( Base `  W
) )
30 eqid 2452 . . . . . . 7  |-  ( +g  `  W )  =  ( +g  `  W )
311, 30lmodvacl 17080 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
r ( .s `  W ) x )  e.  ( Base `  W
)  /\  y  e.  ( Base `  W )
)  ->  ( (
r ( .s `  W ) x ) ( +g  `  W
) y )  e.  ( Base `  W
) )
3217, 26, 29, 31syl3anc 1219 . . . . 5  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  (
( r ( .s
`  W ) x ) ( +g  `  W
) y )  e.  ( Base `  W
) )
33 eqid 2452 . . . . . . . 8  |-  ( +g  `  (Scalar `  W )
)  =  ( +g  `  (Scalar `  W )
)
34 eqid 2452 . . . . . . . 8  |-  ( .r
`  (Scalar `  W )
)  =  ( .r
`  (Scalar `  W )
)
351, 30, 2, 23, 24, 33, 34, 4lfli 33025 . . . . . . 7  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  (
r  e.  ( Base `  (Scalar `  W )
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  ->  ( G `  ( ( r ( .s `  W ) x ) ( +g  `  W ) y ) )  =  ( ( r ( .r `  (Scalar `  W ) ) ( G `  x
) ) ( +g  `  (Scalar `  W )
) ( G `  y ) ) )
3617, 19, 18, 22, 29, 35syl113anc 1231 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  ( G `  ( (
r ( .s `  W ) x ) ( +g  `  W
) y ) )  =  ( ( r ( .r `  (Scalar `  W ) ) ( G `  x ) ) ( +g  `  (Scalar `  W ) ) ( G `  y ) ) )
372, 3, 4, 5lkrf0 33057 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  x  e.  ( K `  G
) )  ->  ( G `  x )  =  ( 0g `  (Scalar `  W ) ) )
3817, 19, 20, 37syl3anc 1219 . . . . . . . . 9  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  ( G `  x )  =  ( 0g `  (Scalar `  W ) ) )
3938oveq2d 6211 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  (
r ( .r `  (Scalar `  W ) ) ( G `  x
) )  =  ( r ( .r `  (Scalar `  W ) ) ( 0g `  (Scalar `  W ) ) ) )
402lmodrng 17074 . . . . . . . . . 10  |-  ( W  e.  LMod  ->  (Scalar `  W )  e.  Ring )
4117, 40syl 16 . . . . . . . . 9  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  (Scalar `  W )  e.  Ring )
4224, 34, 3rngrz 16800 . . . . . . . . 9  |-  ( ( (Scalar `  W )  e.  Ring  /\  r  e.  ( Base `  (Scalar `  W
) ) )  -> 
( r ( .r
`  (Scalar `  W )
) ( 0g `  (Scalar `  W ) ) )  =  ( 0g
`  (Scalar `  W )
) )
4341, 18, 42syl2anc 661 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  (
r ( .r `  (Scalar `  W ) ) ( 0g `  (Scalar `  W ) ) )  =  ( 0g `  (Scalar `  W ) ) )
4439, 43eqtrd 2493 . . . . . . 7  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  (
r ( .r `  (Scalar `  W ) ) ( G `  x
) )  =  ( 0g `  (Scalar `  W ) ) )
452, 3, 4, 5lkrf0 33057 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  y  e.  ( K `  G
) )  ->  ( G `  y )  =  ( 0g `  (Scalar `  W ) ) )
4617, 19, 27, 45syl3anc 1219 . . . . . . 7  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  ( G `  y )  =  ( 0g `  (Scalar `  W ) ) )
4744, 46oveq12d 6213 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  (
( r ( .r
`  (Scalar `  W )
) ( G `  x ) ) ( +g  `  (Scalar `  W ) ) ( G `  y ) )  =  ( ( 0g `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 0g `  (Scalar `  W ) ) ) )
482lmodfgrp 17075 . . . . . . . 8  |-  ( W  e.  LMod  ->  (Scalar `  W )  e.  Grp )
4917, 48syl 16 . . . . . . 7  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  (Scalar `  W )  e.  Grp )
5024, 3grpidcl 15680 . . . . . . . 8  |-  ( (Scalar `  W )  e.  Grp  ->  ( 0g `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) ) )
5149, 50syl 16 . . . . . . 7  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  ( 0g `  (Scalar `  W
) )  e.  (
Base `  (Scalar `  W
) ) )
5224, 33, 3grplid 15682 . . . . . . 7  |-  ( ( (Scalar `  W )  e.  Grp  /\  ( 0g
`  (Scalar `  W )
)  e.  ( Base `  (Scalar `  W )
) )  ->  (
( 0g `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 0g `  (Scalar `  W ) ) )  =  ( 0g `  (Scalar `  W ) ) )
5349, 51, 52syl2anc 661 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  (
( 0g `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 0g `  (Scalar `  W ) ) )  =  ( 0g `  (Scalar `  W ) ) )
5436, 47, 533eqtrd 2497 . . . . 5  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  ( G `  ( (
r ( .s `  W ) x ) ( +g  `  W
) y ) )  =  ( 0g `  (Scalar `  W ) ) )
551, 2, 3, 4, 5ellkr 33053 . . . . . 6  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  (
( ( r ( .s `  W ) x ) ( +g  `  W ) y )  e.  ( K `  G )  <->  ( (
( r ( .s
`  W ) x ) ( +g  `  W
) y )  e.  ( Base `  W
)  /\  ( G `  ( ( r ( .s `  W ) x ) ( +g  `  W ) y ) )  =  ( 0g
`  (Scalar `  W )
) ) ) )
5655ad2antrr 725 . . . . 5  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  (
( ( r ( .s `  W ) x ) ( +g  `  W ) y )  e.  ( K `  G )  <->  ( (
( r ( .s
`  W ) x ) ( +g  `  W
) y )  e.  ( Base `  W
)  /\  ( G `  ( ( r ( .s `  W ) x ) ( +g  `  W ) y ) )  =  ( 0g
`  (Scalar `  W )
) ) ) )
5732, 54, 56mpbir2and 913 . . . 4  |-  ( ( ( ( W  e. 
LMod  /\  G  e.  F
)  /\  r  e.  ( Base `  (Scalar `  W
) ) )  /\  ( x  e.  ( K `  G )  /\  y  e.  ( K `  G )
) )  ->  (
( r ( .s
`  W ) x ) ( +g  `  W
) y )  e.  ( K `  G
) )
5857ralrimivva 2908 . . 3  |-  ( ( ( W  e.  LMod  /\  G  e.  F )  /\  r  e.  (
Base `  (Scalar `  W
) ) )  ->  A. x  e.  ( K `  G ) A. y  e.  ( K `  G )
( ( r ( .s `  W ) x ) ( +g  `  W ) y )  e.  ( K `  G ) )
5958ralrimiva 2827 . 2  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  A. r  e.  ( Base `  (Scalar `  W ) ) A. x  e.  ( K `  G ) A. y  e.  ( K `  G
) ( ( r ( .s `  W
) x ) ( +g  `  W ) y )  e.  ( K `  G ) )
60 lkrlss.s . . 3  |-  S  =  ( LSubSp `  W )
612, 24, 1, 30, 23, 60islss 17134 . 2  |-  ( ( K `  G )  e.  S  <->  ( ( K `  G )  C_  ( Base `  W
)  /\  ( K `  G )  =/=  (/)  /\  A. r  e.  ( Base `  (Scalar `  W )
) A. x  e.  ( K `  G
) A. y  e.  ( K `  G
) ( ( r ( .s `  W
) x ) ( +g  `  W ) y )  e.  ( K `  G ) ) )
628, 16, 59, 61syl3anbrc 1172 1  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  ( K `  G )  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2645   A.wral 2796   {crab 2800    C_ wss 3431   (/)c0 3740   ` cfv 5521  (class class class)co 6195   Basecbs 14287   +g cplusg 14352   .rcmulr 14353  Scalarcsca 14355   .scvsca 14356   0gc0g 14492   Grpcgrp 15524   Ringcrg 16763   LModclmod 17066   LSubSpclss 17131  LFnlclfn 33021  LKerclk 33049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477  ax-cnex 9444  ax-resscn 9445  ax-1cn 9446  ax-icn 9447  ax-addcl 9448  ax-addrcl 9449  ax-mulcl 9450  ax-mulrcl 9451  ax-mulcom 9452  ax-addass 9453  ax-mulass 9454  ax-distr 9455  ax-i2m1 9456  ax-1ne0 9457  ax-1rid 9458  ax-rnegex 9459  ax-rrecex 9460  ax-cnre 9461  ax-pre-lttri 9462  ax-pre-lttrn 9463  ax-pre-ltadd 9464  ax-pre-mulgt0 9465
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-nel 2648  df-ral 2801  df-rex 2802  df-reu 2803  df-rmo 2804  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-pss 3447  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4195  df-iun 4276  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4489  df-eprel 4735  df-id 4739  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-ord 4825  df-on 4826  df-lim 4827  df-suc 4828  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-riota 6156  df-ov 6198  df-oprab 6199  df-mpt2 6200  df-om 6582  df-1st 6682  df-2nd 6683  df-recs 6937  df-rdg 6971  df-er 7206  df-map 7321  df-en 7416  df-dom 7417  df-sdom 7418  df-pnf 9526  df-mnf 9527  df-xr 9528  df-ltxr 9529  df-le 9530  df-sub 9703  df-neg 9704  df-nn 10429  df-2 10486  df-ndx 14290  df-slot 14291  df-base 14292  df-sets 14293  df-plusg 14365  df-0g 14494  df-mnd 15529  df-grp 15659  df-minusg 15660  df-sbg 15661  df-mgp 16709  df-ur 16721  df-rng 16765  df-lmod 17068  df-lss 17132  df-lfl 33022  df-lkr 33050
This theorem is referenced by:  lkrssv  33060  lkrlsp  33066  lkrlsp3  33068  lkrshp  33069  lclkrlem2f  35476  lclkrlem2n  35484  lclkrlem2v  35492  lcfrlem25  35531  lcfrlem35  35541
  Copyright terms: Public domain W3C validator