Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkreqN Structured version   Unicode version

Theorem lkreqN 32812
Description: Proportional functionals have equal kernels. (Contributed by NM, 28-Mar-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
lkreq.s  |-  S  =  (Scalar `  W )
lkreq.r  |-  R  =  ( Base `  S
)
lkreq.o  |-  .0.  =  ( 0g `  S )
lkreq.f  |-  F  =  (LFnl `  W )
lkreq.k  |-  K  =  (LKer `  W )
lkreq.d  |-  D  =  (LDual `  W )
lkreq.t  |-  .x.  =  ( .s `  D )
lkreq.w  |-  ( ph  ->  W  e.  LVec )
lkreq.a  |-  ( ph  ->  A  e.  ( R 
\  {  .0.  }
) )
lkreq.h  |-  ( ph  ->  H  e.  F )
lkreq.g  |-  ( ph  ->  G  =  ( A 
.x.  H ) )
Assertion
Ref Expression
lkreqN  |-  ( ph  ->  ( K `  G
)  =  ( K `
 H ) )

Proof of Theorem lkreqN
StepHypRef Expression
1 lkreq.g . . . . . . . . 9  |-  ( ph  ->  G  =  ( A 
.x.  H ) )
21eqeq1d 2449 . . . . . . . 8  |-  ( ph  ->  ( G  =  ( 0g `  D )  <-> 
( A  .x.  H
)  =  ( 0g
`  D ) ) )
3 eqid 2441 . . . . . . . . . 10  |-  ( Base `  D )  =  (
Base `  D )
4 lkreq.t . . . . . . . . . 10  |-  .x.  =  ( .s `  D )
5 eqid 2441 . . . . . . . . . 10  |-  (Scalar `  D )  =  (Scalar `  D )
6 eqid 2441 . . . . . . . . . 10  |-  ( Base `  (Scalar `  D )
)  =  ( Base `  (Scalar `  D )
)
7 eqid 2441 . . . . . . . . . 10  |-  ( 0g
`  (Scalar `  D )
)  =  ( 0g
`  (Scalar `  D )
)
8 eqid 2441 . . . . . . . . . 10  |-  ( 0g
`  D )  =  ( 0g `  D
)
9 lkreq.d . . . . . . . . . . 11  |-  D  =  (LDual `  W )
10 lkreq.w . . . . . . . . . . 11  |-  ( ph  ->  W  e.  LVec )
119, 10lduallvec 32796 . . . . . . . . . 10  |-  ( ph  ->  D  e.  LVec )
12 lkreq.a . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  ( R 
\  {  .0.  }
) )
1312eldifad 3338 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  R )
14 lkreq.s . . . . . . . . . . . 12  |-  S  =  (Scalar `  W )
15 lkreq.r . . . . . . . . . . . 12  |-  R  =  ( Base `  S
)
1614, 15, 9, 5, 6, 10ldualsbase 32775 . . . . . . . . . . 11  |-  ( ph  ->  ( Base `  (Scalar `  D ) )  =  R )
1713, 16eleqtrrd 2518 . . . . . . . . . 10  |-  ( ph  ->  A  e.  ( Base `  (Scalar `  D )
) )
18 lkreq.f . . . . . . . . . . 11  |-  F  =  (LFnl `  W )
19 lkreq.h . . . . . . . . . . 11  |-  ( ph  ->  H  e.  F )
2018, 9, 3, 10, 19ldualelvbase 32769 . . . . . . . . . 10  |-  ( ph  ->  H  e.  ( Base `  D ) )
213, 4, 5, 6, 7, 8, 11, 17, 20lvecvs0or 17187 . . . . . . . . 9  |-  ( ph  ->  ( ( A  .x.  H )  =  ( 0g `  D )  <-> 
( A  =  ( 0g `  (Scalar `  D ) )  \/  H  =  ( 0g
`  D ) ) ) )
22 lkreq.o . . . . . . . . . . . . 13  |-  .0.  =  ( 0g `  S )
23 lveclmod 17185 . . . . . . . . . . . . . 14  |-  ( W  e.  LVec  ->  W  e. 
LMod )
2410, 23syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  W  e.  LMod )
2514, 22, 9, 5, 7, 24ldual0 32789 . . . . . . . . . . . 12  |-  ( ph  ->  ( 0g `  (Scalar `  D ) )  =  .0.  )
2625eqeq2d 2452 . . . . . . . . . . 11  |-  ( ph  ->  ( A  =  ( 0g `  (Scalar `  D ) )  <->  A  =  .0.  ) )
27 eldifsni 3999 . . . . . . . . . . . . . 14  |-  ( A  e.  ( R  \  {  .0.  } )  ->  A  =/=  .0.  )
2812, 27syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  A  =/=  .0.  )
2928a1d 25 . . . . . . . . . . . 12  |-  ( ph  ->  ( H  =/=  ( 0g `  D )  ->  A  =/=  .0.  ) )
3029necon4d 2672 . . . . . . . . . . 11  |-  ( ph  ->  ( A  =  .0. 
->  H  =  ( 0g `  D ) ) )
3126, 30sylbid 215 . . . . . . . . . 10  |-  ( ph  ->  ( A  =  ( 0g `  (Scalar `  D ) )  ->  H  =  ( 0g `  D ) ) )
32 idd 24 . . . . . . . . . 10  |-  ( ph  ->  ( H  =  ( 0g `  D )  ->  H  =  ( 0g `  D ) ) )
3331, 32jaod 380 . . . . . . . . 9  |-  ( ph  ->  ( ( A  =  ( 0g `  (Scalar `  D ) )  \/  H  =  ( 0g
`  D ) )  ->  H  =  ( 0g `  D ) ) )
3421, 33sylbid 215 . . . . . . . 8  |-  ( ph  ->  ( ( A  .x.  H )  =  ( 0g `  D )  ->  H  =  ( 0g `  D ) ) )
352, 34sylbid 215 . . . . . . 7  |-  ( ph  ->  ( G  =  ( 0g `  D )  ->  H  =  ( 0g `  D ) ) )
36 nne 2610 . . . . . . 7  |-  ( -.  H  =/=  ( 0g
`  D )  <->  H  =  ( 0g `  D ) )
3735, 36syl6ibr 227 . . . . . 6  |-  ( ph  ->  ( G  =  ( 0g `  D )  ->  -.  H  =/=  ( 0g `  D ) ) )
3837con3d 133 . . . . 5  |-  ( ph  ->  ( -.  -.  H  =/=  ( 0g `  D
)  ->  -.  G  =  ( 0g `  D ) ) )
3938orrd 378 . . . 4  |-  ( ph  ->  ( -.  H  =/=  ( 0g `  D
)  \/  -.  G  =  ( 0g `  D ) ) )
40 ianor 488 . . . 4  |-  ( -.  ( H  =/=  ( 0g `  D )  /\  G  =  ( 0g `  D ) )  <->  ( -.  H  =/=  ( 0g `  D )  \/  -.  G  =  ( 0g `  D ) ) )
4139, 40sylibr 212 . . 3  |-  ( ph  ->  -.  ( H  =/=  ( 0g `  D
)  /\  G  =  ( 0g `  D ) ) )
42 df-pss 3342 . . . . . 6  |-  ( ( K `  H ) 
C.  ( K `  G )  <->  ( ( K `  H )  C_  ( K `  G
)  /\  ( K `  H )  =/=  ( K `  G )
) )
43 lkreq.k . . . . . . 7  |-  K  =  (LKer `  W )
4418, 14, 15, 9, 4, 24, 13, 19ldualvscl 32781 . . . . . . . 8  |-  ( ph  ->  ( A  .x.  H
)  e.  F )
451, 44eqeltrd 2515 . . . . . . 7  |-  ( ph  ->  G  e.  F )
4618, 43, 9, 8, 10, 19, 45lkrpssN 32805 . . . . . 6  |-  ( ph  ->  ( ( K `  H )  C.  ( K `  G )  <->  ( H  =/=  ( 0g
`  D )  /\  G  =  ( 0g `  D ) ) ) )
4742, 46syl5rbbr 260 . . . . 5  |-  ( ph  ->  ( ( H  =/=  ( 0g `  D
)  /\  G  =  ( 0g `  D ) )  <->  ( ( K `
 H )  C_  ( K `  G )  /\  ( K `  H )  =/=  ( K `  G )
) ) )
4814, 15, 18, 43, 9, 4, 10, 19, 13lkrss 32810 . . . . . . 7  |-  ( ph  ->  ( K `  H
)  C_  ( K `  ( A  .x.  H
) ) )
491fveq2d 5693 . . . . . . 7  |-  ( ph  ->  ( K `  G
)  =  ( K `
 ( A  .x.  H ) ) )
5048, 49sseqtr4d 3391 . . . . . 6  |-  ( ph  ->  ( K `  H
)  C_  ( K `  G ) )
5150biantrurd 508 . . . . 5  |-  ( ph  ->  ( ( K `  H )  =/=  ( K `  G )  <->  ( ( K `  H
)  C_  ( K `  G )  /\  ( K `  H )  =/=  ( K `  G
) ) ) )
5247, 51bitr4d 256 . . . 4  |-  ( ph  ->  ( ( H  =/=  ( 0g `  D
)  /\  G  =  ( 0g `  D ) )  <->  ( K `  H )  =/=  ( K `  G )
) )
5352necon2bbid 2667 . . 3  |-  ( ph  ->  ( ( K `  H )  =  ( K `  G )  <->  -.  ( H  =/=  ( 0g `  D )  /\  G  =  ( 0g `  D ) ) ) )
5441, 53mpbird 232 . 2  |-  ( ph  ->  ( K `  H
)  =  ( K `
 G ) )
5554eqcomd 2446 1  |-  ( ph  ->  ( K `  G
)  =  ( K `
 H ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2604    \ cdif 3323    C_ wss 3326    C. wpss 3327   {csn 3875   ` cfv 5416  (class class class)co 6089   Basecbs 14172  Scalarcsca 14239   .scvsca 14240   0gc0g 14376   LModclmod 16946   LVecclvec 17181  LFnlclfn 32699  LKerclk 32727  LDualcld 32765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-rep 4401  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370  ax-cnex 9336  ax-resscn 9337  ax-1cn 9338  ax-icn 9339  ax-addcl 9340  ax-addrcl 9341  ax-mulcl 9342  ax-mulrcl 9343  ax-mulcom 9344  ax-addass 9345  ax-mulass 9346  ax-distr 9347  ax-i2m1 9348  ax-1ne0 9349  ax-1rid 9350  ax-rnegex 9351  ax-rrecex 9352  ax-cnre 9353  ax-pre-lttri 9354  ax-pre-lttrn 9355  ax-pre-ltadd 9356  ax-pre-mulgt0 9357
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-pss 3342  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-tp 3880  df-op 3882  df-uni 4090  df-int 4127  df-iun 4171  df-br 4291  df-opab 4349  df-mpt 4350  df-tr 4384  df-eprel 4630  df-id 4634  df-po 4639  df-so 4640  df-fr 4677  df-we 4679  df-ord 4720  df-on 4721  df-lim 4722  df-suc 4723  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-of 6318  df-om 6475  df-1st 6575  df-2nd 6576  df-tpos 6743  df-recs 6830  df-rdg 6864  df-1o 6918  df-oadd 6922  df-er 7099  df-map 7214  df-en 7309  df-dom 7310  df-sdom 7311  df-fin 7312  df-pnf 9418  df-mnf 9419  df-xr 9420  df-ltxr 9421  df-le 9422  df-sub 9595  df-neg 9596  df-nn 10321  df-2 10378  df-3 10379  df-4 10380  df-5 10381  df-6 10382  df-n0 10578  df-z 10645  df-uz 10860  df-fz 11436  df-struct 14174  df-ndx 14175  df-slot 14176  df-base 14177  df-sets 14178  df-ress 14179  df-plusg 14249  df-mulr 14250  df-sca 14252  df-vsca 14253  df-0g 14378  df-mnd 15413  df-submnd 15463  df-grp 15543  df-minusg 15544  df-sbg 15545  df-subg 15676  df-cntz 15833  df-lsm 16133  df-cmn 16277  df-abl 16278  df-mgp 16590  df-ur 16602  df-rng 16645  df-oppr 16713  df-dvdsr 16731  df-unit 16732  df-invr 16762  df-drng 16832  df-lmod 16948  df-lss 17012  df-lsp 17051  df-lvec 17182  df-lshyp 32619  df-lfl 32700  df-lkr 32728  df-ldual 32766
This theorem is referenced by:  lkrlspeqN  32813  lcdlkreq2N  35265
  Copyright terms: Public domain W3C validator