Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkr0f Structured version   Unicode version

Theorem lkr0f 33042
Description: The kernel of the zero functional is the set of all vectors. (Contributed by NM, 17-Apr-2014.)
Hypotheses
Ref Expression
lkr0f.d  |-  D  =  (Scalar `  W )
lkr0f.o  |-  .0.  =  ( 0g `  D )
lkr0f.v  |-  V  =  ( Base `  W
)
lkr0f.f  |-  F  =  (LFnl `  W )
lkr0f.k  |-  K  =  (LKer `  W )
Assertion
Ref Expression
lkr0f  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  (
( K `  G
)  =  V  <->  G  =  ( V  X.  {  .0.  } ) ) )

Proof of Theorem lkr0f
StepHypRef Expression
1 lkr0f.d . . . . . . 7  |-  D  =  (Scalar `  W )
2 eqid 2451 . . . . . . 7  |-  ( Base `  D )  =  (
Base `  D )
3 lkr0f.v . . . . . . 7  |-  V  =  ( Base `  W
)
4 lkr0f.f . . . . . . 7  |-  F  =  (LFnl `  W )
51, 2, 3, 4lflf 33011 . . . . . 6  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  G : V --> ( Base `  D
) )
6 ffn 5654 . . . . . 6  |-  ( G : V --> ( Base `  D )  ->  G  Fn  V )
75, 6syl 16 . . . . 5  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  G  Fn  V )
87adantr 465 . . . 4  |-  ( ( ( W  e.  LMod  /\  G  e.  F )  /\  ( K `  G )  =  V )  ->  G  Fn  V )
9 lkr0f.o . . . . . . 7  |-  .0.  =  ( 0g `  D )
10 lkr0f.k . . . . . . 7  |-  K  =  (LKer `  W )
111, 9, 4, 10lkrval 33036 . . . . . 6  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  ( K `  G )  =  ( `' G " {  .0.  } ) )
1211eqeq1d 2453 . . . . 5  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  (
( K `  G
)  =  V  <->  ( `' G " {  .0.  }
)  =  V ) )
1312biimpa 484 . . . 4  |-  ( ( ( W  e.  LMod  /\  G  e.  F )  /\  ( K `  G )  =  V )  ->  ( `' G " {  .0.  }
)  =  V )
14 fvex 5796 . . . . . . 7  |-  ( 0g
`  D )  e. 
_V
159, 14eqeltri 2533 . . . . . 6  |-  .0.  e.  _V
1615fconst2 6030 . . . . 5  |-  ( G : V --> {  .0.  }  <-> 
G  =  ( V  X.  {  .0.  }
) )
17 fconst4 6038 . . . . 5  |-  ( G : V --> {  .0.  }  <-> 
( G  Fn  V  /\  ( `' G " {  .0.  } )  =  V ) )
1816, 17bitr3i 251 . . . 4  |-  ( G  =  ( V  X.  {  .0.  } )  <->  ( G  Fn  V  /\  ( `' G " {  .0.  } )  =  V ) )
198, 13, 18sylanbrc 664 . . 3  |-  ( ( ( W  e.  LMod  /\  G  e.  F )  /\  ( K `  G )  =  V )  ->  G  =  ( V  X.  {  .0.  } ) )
2019ex 434 . 2  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  (
( K `  G
)  =  V  ->  G  =  ( V  X.  {  .0.  } ) ) )
2118biimpi 194 . . . . . 6  |-  ( G  =  ( V  X.  {  .0.  } )  -> 
( G  Fn  V  /\  ( `' G " {  .0.  } )  =  V ) )
2221adantl 466 . . . . 5  |-  ( ( W  e.  LMod  /\  G  =  ( V  X.  {  .0.  } ) )  ->  ( G  Fn  V  /\  ( `' G " {  .0.  } )  =  V ) )
23 simpr 461 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  G  =  ( V  X.  {  .0.  } ) )  ->  G  =  ( V  X.  {  .0.  } ) )
24 eqid 2451 . . . . . . . . . . 11  |-  (LFnl `  W )  =  (LFnl `  W )
251, 9, 3, 24lfl0f 33017 . . . . . . . . . 10  |-  ( W  e.  LMod  ->  ( V  X.  {  .0.  }
)  e.  (LFnl `  W ) )
2625adantr 465 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  G  =  ( V  X.  {  .0.  } ) )  ->  ( V  X.  {  .0.  } )  e.  (LFnl `  W )
)
2723, 26eqeltrd 2537 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  G  =  ( V  X.  {  .0.  } ) )  ->  G  e.  (LFnl `  W ) )
281, 9, 24, 10lkrval 33036 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  G  e.  (LFnl `  W )
)  ->  ( K `  G )  =  ( `' G " {  .0.  } ) )
2927, 28syldan 470 . . . . . . 7  |-  ( ( W  e.  LMod  /\  G  =  ( V  X.  {  .0.  } ) )  ->  ( K `  G )  =  ( `' G " {  .0.  } ) )
3029eqeq1d 2453 . . . . . 6  |-  ( ( W  e.  LMod  /\  G  =  ( V  X.  {  .0.  } ) )  ->  ( ( K `
 G )  =  V  <->  ( `' G " {  .0.  } )  =  V ) )
31 ffn 5654 . . . . . . . . 9  |-  ( G : V --> {  .0.  }  ->  G  Fn  V
)
3216, 31sylbir 213 . . . . . . . 8  |-  ( G  =  ( V  X.  {  .0.  } )  ->  G  Fn  V )
3332adantl 466 . . . . . . 7  |-  ( ( W  e.  LMod  /\  G  =  ( V  X.  {  .0.  } ) )  ->  G  Fn  V
)
3433biantrurd 508 . . . . . 6  |-  ( ( W  e.  LMod  /\  G  =  ( V  X.  {  .0.  } ) )  ->  ( ( `' G " {  .0.  } )  =  V  <->  ( G  Fn  V  /\  ( `' G " {  .0.  } )  =  V ) ) )
3530, 34bitrd 253 . . . . 5  |-  ( ( W  e.  LMod  /\  G  =  ( V  X.  {  .0.  } ) )  ->  ( ( K `
 G )  =  V  <->  ( G  Fn  V  /\  ( `' G " {  .0.  } )  =  V ) ) )
3622, 35mpbird 232 . . . 4  |-  ( ( W  e.  LMod  /\  G  =  ( V  X.  {  .0.  } ) )  ->  ( K `  G )  =  V )
3736ex 434 . . 3  |-  ( W  e.  LMod  ->  ( G  =  ( V  X.  {  .0.  } )  -> 
( K `  G
)  =  V ) )
3837adantr 465 . 2  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  ( G  =  ( V  X.  {  .0.  } )  ->  ( K `  G )  =  V ) )
3920, 38impbid 191 1  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  (
( K `  G
)  =  V  <->  G  =  ( V  X.  {  .0.  } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   _Vcvv 3065   {csn 3972    X. cxp 4933   `'ccnv 4934   "cima 4938    Fn wfn 5508   -->wf 5509   ` cfv 5513   Basecbs 14273  Scalarcsca 14340   0gc0g 14477   LModclmod 17051  LFnlclfn 33005  LKerclk 33033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4498  ax-sep 4508  ax-nul 4516  ax-pow 4565  ax-pr 4626  ax-un 6469  ax-cnex 9436  ax-resscn 9437  ax-1cn 9438  ax-icn 9439  ax-addcl 9440  ax-addrcl 9441  ax-mulcl 9442  ax-mulrcl 9443  ax-mulcom 9444  ax-addass 9445  ax-mulass 9446  ax-distr 9447  ax-i2m1 9448  ax-1ne0 9449  ax-1rid 9450  ax-rnegex 9451  ax-rrecex 9452  ax-cnre 9453  ax-pre-lttri 9454  ax-pre-lttrn 9455  ax-pre-ltadd 9456  ax-pre-mulgt0 9457
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2599  df-ne 2644  df-nel 2645  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3067  df-sbc 3282  df-csb 3384  df-dif 3426  df-un 3428  df-in 3430  df-ss 3437  df-pss 3439  df-nul 3733  df-if 3887  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4187  df-iun 4268  df-br 4388  df-opab 4446  df-mpt 4447  df-tr 4481  df-eprel 4727  df-id 4731  df-po 4736  df-so 4737  df-fr 4774  df-we 4776  df-ord 4817  df-on 4818  df-lim 4819  df-suc 4820  df-xp 4941  df-rel 4942  df-cnv 4943  df-co 4944  df-dm 4945  df-rn 4946  df-res 4947  df-ima 4948  df-iota 5476  df-fun 5515  df-fn 5516  df-f 5517  df-f1 5518  df-fo 5519  df-f1o 5520  df-fv 5521  df-riota 6148  df-ov 6190  df-oprab 6191  df-mpt2 6192  df-om 6574  df-recs 6929  df-rdg 6963  df-er 7198  df-map 7313  df-en 7408  df-dom 7409  df-sdom 7410  df-pnf 9518  df-mnf 9519  df-xr 9520  df-ltxr 9521  df-le 9522  df-sub 9695  df-neg 9696  df-nn 10421  df-2 10478  df-ndx 14276  df-slot 14277  df-base 14278  df-sets 14279  df-plusg 14350  df-0g 14479  df-mnd 15514  df-grp 15644  df-mgp 16694  df-rng 16750  df-lmod 17053  df-lfl 33006  df-lkr 33034
This theorem is referenced by:  lkrscss  33046  eqlkr  33047  lkrshp  33053  lkrshp3  33054  lkrshpor  33055  lfl1dim  33069  lfl1dim2N  33070  lkr0f2  33109  lclkrlem1  35454  lclkrlem2j  35464  lclkr  35481  lclkrs  35487  mapd0  35613
  Copyright terms: Public domain W3C validator