Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linevalexample Structured version   Unicode version

Theorem linevalexample 32294
Description: The polynomial  x  - 
3 over  ZZ evaluated for  x  =  5 results in 2. (Contributed by AV, 3-Jul-2019.)
Hypotheses
Ref Expression
linevalexample.p  |-  P  =  (Poly1 ` ring )
linevalexample.b  |-  B  =  ( Base `  P
)
linevalexample.x  |-  X  =  (var1 ` ring )
linevalexample.m  |-  .-  =  ( -g `  P )
linevalexample.a  |-  A  =  (algSc `  P )
linevalexample.g  |-  G  =  ( X  .-  ( A `  3 )
)
linevalexample.o  |-  O  =  (eval1 ` ring )
Assertion
Ref Expression
linevalexample  |-  ( ( O `  ( X 
.-  ( A ` 
3 ) ) ) `
 5 )  =  2

Proof of Theorem linevalexample
StepHypRef Expression
1 zringcrng 18298 . . 3  |-ring  e.  CRing
2 linevalexample.p . . . 4  |-  P  =  (Poly1 ` ring )
3 linevalexample.b . . . 4  |-  B  =  ( Base `  P
)
4 zringbas 18302 . . . 4  |-  ZZ  =  ( Base ` ring )
5 linevalexample.x . . . 4  |-  X  =  (var1 ` ring )
6 linevalexample.m . . . 4  |-  .-  =  ( -g `  P )
7 linevalexample.a . . . 4  |-  A  =  (algSc `  P )
8 eqid 2467 . . . 4  |-  ( X 
.-  ( A ` 
3 ) )  =  ( X  .-  ( A `  3 )
)
9 3z 10898 . . . . 5  |-  3  e.  ZZ
109a1i 11 . . . 4  |-  (ring  e.  CRing  -> 
3  e.  ZZ )
11 linevalexample.o . . . 4  |-  O  =  (eval1 ` ring )
12 id 22 . . . 4  |-  (ring  e.  CRing  ->ring  e.  CRing
)
13 5nn0 10816 . . . . . 6  |-  5  e.  NN0
1413nn0zi 10890 . . . . 5  |-  5  e.  ZZ
1514a1i 11 . . . 4  |-  (ring  e.  CRing  -> 
5  e.  ZZ )
162, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15lineval 32292 . . 3  |-  (ring  e.  CRing  -> 
( ( O `  ( X  .-  ( A `
 3 ) ) ) `  5 )  =  ( 5 (
-g ` ring ) 3 ) )
171, 16ax-mp 5 . 2  |-  ( ( O `  ( X 
.-  ( A ` 
3 ) ) ) `
 5 )  =  ( 5 ( -g ` ring ) 3 )
18 eqid 2467 . . . 4  |-  ( -g ` ring )  =  ( -g ` ring )
1918zringsubgval 32293 . . 3  |-  ( ( 5  e.  ZZ  /\  3  e.  ZZ )  ->  ( 5  -  3 )  =  ( 5 ( -g ` ring ) 3 ) )
2014, 9, 19mp2an 672 . 2  |-  ( 5  -  3 )  =  ( 5 ( -g ` ring ) 3 )
21 5cn 10616 . . 3  |-  5  e.  CC
22 3cn 10611 . . 3  |-  3  e.  CC
23 2cn 10607 . . 3  |-  2  e.  CC
24 3p2e5 10669 . . 3  |-  ( 3  +  2 )  =  5
2521, 22, 23, 24subaddrii 9909 . 2  |-  ( 5  -  3 )  =  2
2617, 20, 253eqtr2i 2502 1  |-  ( ( O `  ( X 
.-  ( A ` 
3 ) ) ) `
 5 )  =  2
Colors of variables: wff setvar class
Syntax hints:    = wceq 1379    e. wcel 1767   ` cfv 5588  (class class class)co 6285    - cmin 9806   2c2 10586   3c3 10587   5c5 10589   ZZcz 10865   Basecbs 14493   -gcsg 15733   CRingccrg 17013  algSccascl 17771  var1cv1 18026  Poly1cpl1 18027  eval1ce1 18162  ℤringzring 18296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-inf2 8059  ax-cnex 9549  ax-resscn 9550  ax-1cn 9551  ax-icn 9552  ax-addcl 9553  ax-addrcl 9554  ax-mulcl 9555  ax-mulrcl 9556  ax-mulcom 9557  ax-addass 9558  ax-mulass 9559  ax-distr 9560  ax-i2m1 9561  ax-1ne0 9562  ax-1rid 9563  ax-rnegex 9564  ax-rrecex 9565  ax-cnre 9566  ax-pre-lttri 9567  ax-pre-lttrn 9568  ax-pre-ltadd 9569  ax-pre-mulgt0 9570  ax-addf 9572  ax-mulf 9573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-of 6525  df-ofr 6526  df-om 6686  df-1st 6785  df-2nd 6786  df-supp 6903  df-recs 7043  df-rdg 7077  df-1o 7131  df-2o 7132  df-oadd 7135  df-er 7312  df-map 7423  df-pm 7424  df-ixp 7471  df-en 7518  df-dom 7519  df-sdom 7520  df-fin 7521  df-fsupp 7831  df-sup 7902  df-oi 7936  df-card 8321  df-pnf 9631  df-mnf 9632  df-xr 9633  df-ltxr 9634  df-le 9635  df-sub 9808  df-neg 9809  df-nn 10538  df-2 10595  df-3 10596  df-4 10597  df-5 10598  df-6 10599  df-7 10600  df-8 10601  df-9 10602  df-10 10603  df-n0 10797  df-z 10866  df-dec 10978  df-uz 11084  df-fz 11674  df-fzo 11794  df-seq 12077  df-hash 12375  df-struct 14495  df-ndx 14496  df-slot 14497  df-base 14498  df-sets 14499  df-ress 14500  df-plusg 14571  df-mulr 14572  df-starv 14573  df-sca 14574  df-vsca 14575  df-ip 14576  df-tset 14577  df-ple 14578  df-ds 14580  df-unif 14581  df-hom 14582  df-cco 14583  df-0g 14700  df-gsum 14701  df-prds 14706  df-pws 14708  df-mre 14844  df-mrc 14845  df-acs 14847  df-mnd 15735  df-mhm 15789  df-submnd 15790  df-grp 15871  df-minusg 15872  df-sbg 15873  df-mulg 15874  df-subg 16012  df-ghm 16079  df-cntz 16169  df-cmn 16615  df-abl 16616  df-mgp 16956  df-ur 16968  df-srg 16972  df-rng 17014  df-cring 17015  df-rnghom 17177  df-subrg 17239  df-lmod 17326  df-lss 17391  df-lsp 17430  df-assa 17772  df-asp 17773  df-ascl 17774  df-psr 17816  df-mvr 17817  df-mpl 17818  df-opsr 17820  df-evls 17982  df-evl 17983  df-psr1 18030  df-vr1 18031  df-ply1 18032  df-evl1 18164  df-cnfld 18232  df-zring 18297
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator