Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linethru Structured version   Unicode version

Theorem linethru 29965
Description: If  A is a line containing two distinct points  P and  Q, then  A is the line through  P and  Q. Theorem 6.18 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 28-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
linethru  |-  ( ( A  e. LinesEE  /\  ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  A  =  ( PLine Q ) )

Proof of Theorem linethru
Dummy variables  a 
b  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ellines 29964 . . 3  |-  ( A  e. LinesEE 
<->  E. n  e.  NN  E. a  e.  ( EE
`  n ) E. b  e.  ( EE
`  n ) ( a  =/=  b  /\  A  =  ( aLine b ) ) )
2 simpll1 1035 . . . . . . . . . . . 12  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  n  e.  NN )
3 simpll2 1036 . . . . . . . . . . . 12  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  a  e.  ( EE `  n ) )
4 simpll3 1037 . . . . . . . . . . . 12  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  b  e.  ( EE `  n ) )
5 simplr 755 . . . . . . . . . . . 12  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  a  =/=  b
)
6 liness 29957 . . . . . . . . . . . 12  |-  ( ( n  e.  NN  /\  ( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  a  =/=  b
) )  ->  (
aLine b )  C_  ( EE `  n ) )
72, 3, 4, 5, 6syl13anc 1230 . . . . . . . . . . 11  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  ( aLine b )  C_  ( EE `  n ) )
8 simprll 763 . . . . . . . . . . 11  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  P  e.  ( aLine b ) )
97, 8sseldd 3500 . . . . . . . . . 10  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  P  e.  ( EE `  n ) )
10 simprlr 764 . . . . . . . . . . 11  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  Q  e.  ( aLine b ) )
117, 10sseldd 3500 . . . . . . . . . 10  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  Q  e.  ( EE `  n ) )
12 simplll 759 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  ->  P  e.  ( aLine b ) )
1312adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  ->  P  e.  ( aLine b ) )
14 simpll1 1035 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  ->  n  e.  NN )
15 simpll2 1036 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
a  e.  ( EE
`  n ) )
16 simpll3 1037 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
b  e.  ( EE
`  n ) )
17 simplr 755 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
a  =/=  b )
18 simprrl 765 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  ->  P  e.  ( EE `  n ) )
19 simprlr 764 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  ->  P  =/=  a )
2019necomd 2728 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
a  =/=  P )
21 lineelsb2 29960 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  NN  /\  ( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  ( P  e.  ( EE `  n
)  /\  a  =/=  P ) )  ->  ( P  e.  ( aLine b )  ->  (
aLine b )  =  ( aLine P ) ) )
2214, 15, 16, 17, 18, 20, 21syl132anc 1246 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( P  e.  ( aLine b )  -> 
( aLine b )  =  ( aLine P
) ) )
2313, 22mpd 15 . . . . . . . . . . . . . 14  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( aLine P
) )
24 linecom 29962 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  NN  /\  ( a  e.  ( EE `  n )  /\  P  e.  ( EE `  n )  /\  a  =/=  P
) )  ->  (
aLine P )  =  ( PLine a ) )
2514, 15, 18, 20, 24syl13anc 1230 . . . . . . . . . . . . . 14  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine P )  =  ( PLine a
) )
2623, 25eqtrd 2498 . . . . . . . . . . . . 13  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( PLine a
) )
27 neeq2 2740 . . . . . . . . . . . . . . . . 17  |-  ( Q  =  a  ->  ( P  =/=  Q  <->  P  =/=  a ) )
2827anbi2d 703 . . . . . . . . . . . . . . . 16  |-  ( Q  =  a  ->  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  <->  ( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a ) ) )
2928anbi1d 704 . . . . . . . . . . . . . . 15  |-  ( Q  =  a  ->  (
( ( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/= 
Q )  /\  ( P  e.  ( EE `  n )  /\  Q  e.  ( EE `  n
) ) )  <->  ( (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a )  /\  ( P  e.  ( EE `  n )  /\  Q  e.  ( EE `  n ) ) ) ) )
3029anbi2d 703 . . . . . . . . . . . . . 14  |-  ( Q  =  a  ->  (
( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  <->  ( (
( n  e.  NN  /\  a  e.  ( EE
`  n )  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  ( ( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a )  /\  ( P  e.  ( EE `  n )  /\  Q  e.  ( EE `  n
) ) ) ) ) )
31 oveq2 6304 . . . . . . . . . . . . . . 15  |-  ( Q  =  a  ->  ( PLine Q )  =  ( PLine a ) )
3231eqeq2d 2471 . . . . . . . . . . . . . 14  |-  ( Q  =  a  ->  (
( aLine b )  =  ( PLine Q
)  <->  ( aLine b )  =  ( PLine a ) ) )
3330, 32imbi12d 320 . . . . . . . . . . . . 13  |-  ( Q  =  a  ->  (
( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n )  /\  b  e.  ( EE `  n
) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( PLine Q
) )  <->  ( (
( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( PLine a
) ) ) )
3426, 33mpbiri 233 . . . . . . . . . . . 12  |-  ( Q  =  a  ->  (
( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( PLine Q
) ) )
35 simp1 996 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  (
( n  e.  NN  /\  a  e.  ( EE
`  n )  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b ) )
36 simp2l 1022 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )
3735, 36, 10syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  Q  e.  ( aLine b ) )
38 simp1l1 1089 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  n  e.  NN )
39 simp1l2 1090 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  a  e.  ( EE `  n
) )
40 simp1l3 1091 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  b  e.  ( EE `  n
) )
41 simp1r 1021 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  a  =/=  b )
42 simp2rr 1066 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  Q  e.  ( EE `  n
) )
43 simp3 998 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  Q  =/=  a )
4443necomd 2728 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  a  =/=  Q )
45 lineelsb2 29960 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  NN  /\  ( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  ( Q  e.  ( EE `  n
)  /\  a  =/=  Q ) )  ->  ( Q  e.  ( aLine b )  ->  (
aLine b )  =  ( aLine Q ) ) )
4638, 39, 40, 41, 42, 44, 45syl132anc 1246 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  ( Q  e.  ( aLine b )  ->  (
aLine b )  =  ( aLine Q ) ) )
4737, 46mpd 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  (
aLine b )  =  ( aLine Q ) )
48 linecom 29962 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  NN  /\  ( a  e.  ( EE `  n )  /\  Q  e.  ( EE `  n )  /\  a  =/=  Q
) )  ->  (
aLine Q )  =  ( QLine a ) )
4938, 39, 42, 44, 48syl13anc 1230 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  (
aLine Q )  =  ( QLine a ) )
5047, 49eqtrd 2498 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  (
aLine b )  =  ( QLine a ) )
5136simplld 754 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  P  e.  ( aLine b ) )
5251, 50eleqtrd 2547 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  P  e.  ( QLine a ) )
53 simp2rl 1065 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  P  e.  ( EE `  n
) )
54 simp2lr 1064 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  P  =/=  Q )
5554necomd 2728 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  Q  =/=  P )
56 lineelsb2 29960 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  NN  /\  ( Q  e.  ( EE `  n )  /\  a  e.  ( EE `  n )  /\  Q  =/=  a )  /\  ( P  e.  ( EE `  n )  /\  Q  =/=  P ) )  -> 
( P  e.  ( QLine a )  -> 
( QLine a )  =  ( QLine P
) ) )
5738, 42, 39, 43, 53, 55, 56syl132anc 1246 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  ( P  e.  ( QLine a )  ->  ( QLine a )  =  ( QLine P ) ) )
5852, 57mpd 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  ( QLine a )  =  ( QLine P ) )
59 linecom 29962 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  NN  /\  ( Q  e.  ( EE `  n )  /\  P  e.  ( EE `  n )  /\  Q  =/=  P ) )  -> 
( QLine P )  =  ( PLine Q
) )
6038, 42, 53, 55, 59syl13anc 1230 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  ( QLine P )  =  ( PLine Q ) )
6150, 58, 603eqtrd 2502 . . . . . . . . . . . . . 14  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  (
aLine b )  =  ( PLine Q ) )
62613expa 1196 . . . . . . . . . . . . 13  |-  ( ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  /\  Q  =/=  a )  -> 
( aLine b )  =  ( PLine Q
) )
6362expcom 435 . . . . . . . . . . . 12  |-  ( Q  =/=  a  ->  (
( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( PLine Q
) ) )
6434, 63pm2.61ine 2770 . . . . . . . . . . 11  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( PLine Q
) )
6564expr 615 . . . . . . . . . 10  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  ( ( P  e.  ( EE `  n )  /\  Q  e.  ( EE `  n
) )  ->  (
aLine b )  =  ( PLine Q ) ) )
669, 11, 65mp2and 679 . . . . . . . . 9  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  ( aLine b )  =  ( PLine Q ) )
6766ex 434 . . . . . . . 8  |-  ( ( ( n  e.  NN  /\  a  e.  ( EE
`  n )  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  -> 
( ( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/= 
Q )  ->  (
aLine b )  =  ( PLine Q ) ) )
68 eleq2 2530 . . . . . . . . . . 11  |-  ( A  =  ( aLine b )  ->  ( P  e.  A  <->  P  e.  (
aLine b ) ) )
69 eleq2 2530 . . . . . . . . . . 11  |-  ( A  =  ( aLine b )  ->  ( Q  e.  A  <->  Q  e.  (
aLine b ) ) )
7068, 69anbi12d 710 . . . . . . . . . 10  |-  ( A  =  ( aLine b )  ->  ( ( P  e.  A  /\  Q  e.  A )  <->  ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) ) ) )
7170anbi1d 704 . . . . . . . . 9  |-  ( A  =  ( aLine b )  ->  ( (
( P  e.  A  /\  Q  e.  A
)  /\  P  =/=  Q )  <->  ( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/= 
Q ) ) )
72 eqeq1 2461 . . . . . . . . 9  |-  ( A  =  ( aLine b )  ->  ( A  =  ( PLine Q
)  <->  ( aLine b )  =  ( PLine Q ) ) )
7371, 72imbi12d 320 . . . . . . . 8  |-  ( A  =  ( aLine b )  ->  ( (
( ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q )  ->  A  =  ( PLine Q
) )  <->  ( (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q )  -> 
( aLine b )  =  ( PLine Q
) ) ) )
7467, 73syl5ibrcom 222 . . . . . . 7  |-  ( ( ( n  e.  NN  /\  a  e.  ( EE
`  n )  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  -> 
( A  =  ( aLine b )  -> 
( ( ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q )  ->  A  =  ( PLine Q
) ) ) )
7574expimpd 603 . . . . . 6  |-  ( ( n  e.  NN  /\  a  e.  ( EE `  n )  /\  b  e.  ( EE `  n
) )  ->  (
( a  =/=  b  /\  A  =  (
aLine b ) )  ->  ( ( ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  A  =  ( PLine Q ) ) ) )
76753expa 1196 . . . . 5  |-  ( ( ( n  e.  NN  /\  a  e.  ( EE
`  n ) )  /\  b  e.  ( EE `  n ) )  ->  ( (
a  =/=  b  /\  A  =  ( aLine b ) )  -> 
( ( ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q )  ->  A  =  ( PLine Q
) ) ) )
7776rexlimdva 2949 . . . 4  |-  ( ( n  e.  NN  /\  a  e.  ( EE `  n ) )  -> 
( E. b  e.  ( EE `  n
) ( a  =/=  b  /\  A  =  ( aLine b ) )  ->  ( (
( P  e.  A  /\  Q  e.  A
)  /\  P  =/=  Q )  ->  A  =  ( PLine Q ) ) ) )
7877rexlimivv 2954 . . 3  |-  ( E. n  e.  NN  E. a  e.  ( EE `  n ) E. b  e.  ( EE `  n
) ( a  =/=  b  /\  A  =  ( aLine b ) )  ->  ( (
( P  e.  A  /\  Q  e.  A
)  /\  P  =/=  Q )  ->  A  =  ( PLine Q ) ) )
791, 78sylbi 195 . 2  |-  ( A  e. LinesEE  ->  ( ( ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  A  =  ( PLine Q ) ) )
80793impib 1194 1  |-  ( ( A  e. LinesEE  /\  ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  A  =  ( PLine Q ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    =/= wne 2652   E.wrex 2808    C_ wss 3471   ` cfv 5594  (class class class)co 6296   NNcn 10556   EEcee 24317  Linecline2 29946  LinesEEclines2 29948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-ec 7331  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-oi 7953  df-card 8337  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-rp 11246  df-ico 11560  df-icc 11561  df-fz 11698  df-fzo 11821  df-seq 12110  df-exp 12169  df-hash 12408  df-cj 12943  df-re 12944  df-im 12945  df-sqrt 13079  df-abs 13080  df-clim 13322  df-sum 13520  df-ee 24320  df-btwn 24321  df-cgr 24322  df-ofs 29795  df-colinear 29851  df-ifs 29852  df-cgr3 29853  df-fs 29854  df-line2 29949  df-lines2 29951
This theorem is referenced by:  hilbert1.2  29967  lineintmo  29969
  Copyright terms: Public domain W3C validator