Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linethru Structured version   Unicode version

Theorem linethru 29380
Description: If  A is a line containing two distinct points  P and  Q, then  A is the line through  P and  Q. Theorem 6.18 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 28-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
linethru  |-  ( ( A  e. LinesEE  /\  ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  A  =  ( PLine Q ) )

Proof of Theorem linethru
Dummy variables  a 
b  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ellines 29379 . . 3  |-  ( A  e. LinesEE 
<->  E. n  e.  NN  E. a  e.  ( EE
`  n ) E. b  e.  ( EE
`  n ) ( a  =/=  b  /\  A  =  ( aLine b ) ) )
2 simpll1 1035 . . . . . . . . . . . 12  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  n  e.  NN )
3 simpll2 1036 . . . . . . . . . . . 12  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  a  e.  ( EE `  n ) )
4 simpll3 1037 . . . . . . . . . . . 12  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  b  e.  ( EE `  n ) )
5 simplr 754 . . . . . . . . . . . 12  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  a  =/=  b
)
6 liness 29372 . . . . . . . . . . . 12  |-  ( ( n  e.  NN  /\  ( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  a  =/=  b
) )  ->  (
aLine b )  C_  ( EE `  n ) )
72, 3, 4, 5, 6syl13anc 1230 . . . . . . . . . . 11  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  ( aLine b )  C_  ( EE `  n ) )
8 simprll 761 . . . . . . . . . . 11  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  P  e.  ( aLine b ) )
97, 8sseldd 3505 . . . . . . . . . 10  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  P  e.  ( EE `  n ) )
10 simprlr 762 . . . . . . . . . . 11  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  Q  e.  ( aLine b ) )
117, 10sseldd 3505 . . . . . . . . . 10  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  Q  e.  ( EE `  n ) )
12 simplll 757 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  ->  P  e.  ( aLine b ) )
1312adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  ->  P  e.  ( aLine b ) )
14 simpll1 1035 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  ->  n  e.  NN )
15 simpll2 1036 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
a  e.  ( EE
`  n ) )
16 simpll3 1037 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
b  e.  ( EE
`  n ) )
17 simplr 754 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
a  =/=  b )
18 simprrl 763 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  ->  P  e.  ( EE `  n ) )
19 simprlr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  ->  P  =/=  a )
2019necomd 2738 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
a  =/=  P )
21 lineelsb2 29375 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  NN  /\  ( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  ( P  e.  ( EE `  n
)  /\  a  =/=  P ) )  ->  ( P  e.  ( aLine b )  ->  (
aLine b )  =  ( aLine P ) ) )
2214, 15, 16, 17, 18, 20, 21syl132anc 1246 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( P  e.  ( aLine b )  -> 
( aLine b )  =  ( aLine P
) ) )
2313, 22mpd 15 . . . . . . . . . . . . . 14  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( aLine P
) )
24 linecom 29377 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  NN  /\  ( a  e.  ( EE `  n )  /\  P  e.  ( EE `  n )  /\  a  =/=  P
) )  ->  (
aLine P )  =  ( PLine a ) )
2514, 15, 18, 20, 24syl13anc 1230 . . . . . . . . . . . . . 14  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine P )  =  ( PLine a
) )
2623, 25eqtrd 2508 . . . . . . . . . . . . 13  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( PLine a
) )
27 neeq2 2750 . . . . . . . . . . . . . . . . 17  |-  ( Q  =  a  ->  ( P  =/=  Q  <->  P  =/=  a ) )
2827anbi2d 703 . . . . . . . . . . . . . . . 16  |-  ( Q  =  a  ->  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  <->  ( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a ) ) )
2928anbi1d 704 . . . . . . . . . . . . . . 15  |-  ( Q  =  a  ->  (
( ( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/= 
Q )  /\  ( P  e.  ( EE `  n )  /\  Q  e.  ( EE `  n
) ) )  <->  ( (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a )  /\  ( P  e.  ( EE `  n )  /\  Q  e.  ( EE `  n ) ) ) ) )
3029anbi2d 703 . . . . . . . . . . . . . 14  |-  ( Q  =  a  ->  (
( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  <->  ( (
( n  e.  NN  /\  a  e.  ( EE
`  n )  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  ( ( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a )  /\  ( P  e.  ( EE `  n )  /\  Q  e.  ( EE `  n
) ) ) ) ) )
31 oveq2 6290 . . . . . . . . . . . . . . 15  |-  ( Q  =  a  ->  ( PLine Q )  =  ( PLine a ) )
3231eqeq2d 2481 . . . . . . . . . . . . . 14  |-  ( Q  =  a  ->  (
( aLine b )  =  ( PLine Q
)  <->  ( aLine b )  =  ( PLine a ) ) )
3330, 32imbi12d 320 . . . . . . . . . . . . 13  |-  ( Q  =  a  ->  (
( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n )  /\  b  e.  ( EE `  n
) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( PLine Q
) )  <->  ( (
( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( PLine a
) ) ) )
3426, 33mpbiri 233 . . . . . . . . . . . 12  |-  ( Q  =  a  ->  (
( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( PLine Q
) ) )
35 simp1 996 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  (
( n  e.  NN  /\  a  e.  ( EE
`  n )  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b ) )
36 simp2l 1022 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )
3735, 36, 10syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  Q  e.  ( aLine b ) )
38 simp1l1 1089 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  n  e.  NN )
39 simp1l2 1090 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  a  e.  ( EE `  n
) )
40 simp1l3 1091 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  b  e.  ( EE `  n
) )
41 simp1r 1021 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  a  =/=  b )
42 simp2rr 1066 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  Q  e.  ( EE `  n
) )
43 simp3 998 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  Q  =/=  a )
4443necomd 2738 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  a  =/=  Q )
45 lineelsb2 29375 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  NN  /\  ( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  ( Q  e.  ( EE `  n
)  /\  a  =/=  Q ) )  ->  ( Q  e.  ( aLine b )  ->  (
aLine b )  =  ( aLine Q ) ) )
4638, 39, 40, 41, 42, 44, 45syl132anc 1246 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  ( Q  e.  ( aLine b )  ->  (
aLine b )  =  ( aLine Q ) ) )
4737, 46mpd 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  (
aLine b )  =  ( aLine Q ) )
48 linecom 29377 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  NN  /\  ( a  e.  ( EE `  n )  /\  Q  e.  ( EE `  n )  /\  a  =/=  Q
) )  ->  (
aLine Q )  =  ( QLine a ) )
4938, 39, 42, 44, 48syl13anc 1230 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  (
aLine Q )  =  ( QLine a ) )
5047, 49eqtrd 2508 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  (
aLine b )  =  ( QLine a ) )
51 simpll 753 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q )  ->  P  e.  ( aLine b ) )
5236, 51syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  P  e.  ( aLine b ) )
5352, 50eleqtrd 2557 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  P  e.  ( QLine a ) )
54 simp2rl 1065 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  P  e.  ( EE `  n
) )
55 simp2lr 1064 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  P  =/=  Q )
5655necomd 2738 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  Q  =/=  P )
57 lineelsb2 29375 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  NN  /\  ( Q  e.  ( EE `  n )  /\  a  e.  ( EE `  n )  /\  Q  =/=  a )  /\  ( P  e.  ( EE `  n )  /\  Q  =/=  P ) )  -> 
( P  e.  ( QLine a )  -> 
( QLine a )  =  ( QLine P
) ) )
5838, 42, 39, 43, 54, 56, 57syl132anc 1246 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  ( P  e.  ( QLine a )  ->  ( QLine a )  =  ( QLine P ) ) )
5953, 58mpd 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  ( QLine a )  =  ( QLine P ) )
60 linecom 29377 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  NN  /\  ( Q  e.  ( EE `  n )  /\  P  e.  ( EE `  n )  /\  Q  =/=  P ) )  -> 
( QLine P )  =  ( PLine Q
) )
6138, 42, 54, 56, 60syl13anc 1230 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  ( QLine P )  =  ( PLine Q ) )
6250, 59, 613eqtrd 2512 . . . . . . . . . . . . . 14  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  (
aLine b )  =  ( PLine Q ) )
63623expa 1196 . . . . . . . . . . . . 13  |-  ( ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  /\  Q  =/=  a )  -> 
( aLine b )  =  ( PLine Q
) )
6463expcom 435 . . . . . . . . . . . 12  |-  ( Q  =/=  a  ->  (
( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( PLine Q
) ) )
6534, 64pm2.61ine 2780 . . . . . . . . . . 11  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( PLine Q
) )
6665expr 615 . . . . . . . . . 10  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  ( ( P  e.  ( EE `  n )  /\  Q  e.  ( EE `  n
) )  ->  (
aLine b )  =  ( PLine Q ) ) )
679, 11, 66mp2and 679 . . . . . . . . 9  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  ( aLine b )  =  ( PLine Q ) )
6867ex 434 . . . . . . . 8  |-  ( ( ( n  e.  NN  /\  a  e.  ( EE
`  n )  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  -> 
( ( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/= 
Q )  ->  (
aLine b )  =  ( PLine Q ) ) )
69 eleq2 2540 . . . . . . . . . . 11  |-  ( A  =  ( aLine b )  ->  ( P  e.  A  <->  P  e.  (
aLine b ) ) )
70 eleq2 2540 . . . . . . . . . . 11  |-  ( A  =  ( aLine b )  ->  ( Q  e.  A  <->  Q  e.  (
aLine b ) ) )
7169, 70anbi12d 710 . . . . . . . . . 10  |-  ( A  =  ( aLine b )  ->  ( ( P  e.  A  /\  Q  e.  A )  <->  ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) ) ) )
7271anbi1d 704 . . . . . . . . 9  |-  ( A  =  ( aLine b )  ->  ( (
( P  e.  A  /\  Q  e.  A
)  /\  P  =/=  Q )  <->  ( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/= 
Q ) ) )
73 eqeq1 2471 . . . . . . . . 9  |-  ( A  =  ( aLine b )  ->  ( A  =  ( PLine Q
)  <->  ( aLine b )  =  ( PLine Q ) ) )
7472, 73imbi12d 320 . . . . . . . 8  |-  ( A  =  ( aLine b )  ->  ( (
( ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q )  ->  A  =  ( PLine Q
) )  <->  ( (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q )  -> 
( aLine b )  =  ( PLine Q
) ) ) )
7568, 74syl5ibrcom 222 . . . . . . 7  |-  ( ( ( n  e.  NN  /\  a  e.  ( EE
`  n )  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  -> 
( A  =  ( aLine b )  -> 
( ( ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q )  ->  A  =  ( PLine Q
) ) ) )
7675expimpd 603 . . . . . 6  |-  ( ( n  e.  NN  /\  a  e.  ( EE `  n )  /\  b  e.  ( EE `  n
) )  ->  (
( a  =/=  b  /\  A  =  (
aLine b ) )  ->  ( ( ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  A  =  ( PLine Q ) ) ) )
77763expa 1196 . . . . 5  |-  ( ( ( n  e.  NN  /\  a  e.  ( EE
`  n ) )  /\  b  e.  ( EE `  n ) )  ->  ( (
a  =/=  b  /\  A  =  ( aLine b ) )  -> 
( ( ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q )  ->  A  =  ( PLine Q
) ) ) )
7877rexlimdva 2955 . . . 4  |-  ( ( n  e.  NN  /\  a  e.  ( EE `  n ) )  -> 
( E. b  e.  ( EE `  n
) ( a  =/=  b  /\  A  =  ( aLine b ) )  ->  ( (
( P  e.  A  /\  Q  e.  A
)  /\  P  =/=  Q )  ->  A  =  ( PLine Q ) ) ) )
7978rexlimivv 2960 . . 3  |-  ( E. n  e.  NN  E. a  e.  ( EE `  n ) E. b  e.  ( EE `  n
) ( a  =/=  b  /\  A  =  ( aLine b ) )  ->  ( (
( P  e.  A  /\  Q  e.  A
)  /\  P  =/=  Q )  ->  A  =  ( PLine Q ) ) )
801, 79sylbi 195 . 2  |-  ( A  e. LinesEE  ->  ( ( ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  A  =  ( PLine Q ) ) )
81803impib 1194 1  |-  ( ( A  e. LinesEE  /\  ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  A  =  ( PLine Q ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   E.wrex 2815    C_ wss 3476   ` cfv 5586  (class class class)co 6282   NNcn 10532   EEcee 23867  Linecline2 29361  LinesEEclines2 29363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-ec 7310  df-map 7419  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-sup 7897  df-oi 7931  df-card 8316  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11079  df-rp 11217  df-ico 11531  df-icc 11532  df-fz 11669  df-fzo 11789  df-seq 12072  df-exp 12131  df-hash 12370  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-clim 13270  df-sum 13468  df-ee 23870  df-btwn 23871  df-cgr 23872  df-ofs 29210  df-colinear 29266  df-ifs 29267  df-cgr3 29268  df-fs 29269  df-line2 29364  df-lines2 29366
This theorem is referenced by:  hilbert1.2  29382  lineintmo  29384
  Copyright terms: Public domain W3C validator