Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lineset Structured version   Unicode version

Theorem lineset 33387
Description: The set of lines in a Hilbert lattice. (Contributed by NM, 19-Sep-2011.)
Hypotheses
Ref Expression
lineset.l  |-  .<_  =  ( le `  K )
lineset.j  |-  .\/  =  ( join `  K )
lineset.a  |-  A  =  ( Atoms `  K )
lineset.n  |-  N  =  ( Lines `  K )
Assertion
Ref Expression
lineset  |-  ( K  e.  B  ->  N  =  { s  |  E. q  e.  A  E. r  e.  A  (
q  =/=  r  /\  s  =  { p  e.  A  |  p  .<_  ( q  .\/  r
) } ) } )
Distinct variable groups:    q, p, r, s, A    K, p, q, r, s    .\/ , s    .<_ , s
Allowed substitution hints:    B( s, r, q, p)    .\/ ( r, q, p)    .<_ ( r, q, p)    N( s, r, q, p)

Proof of Theorem lineset
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 2986 . 2  |-  ( K  e.  B  ->  K  e.  _V )
2 lineset.n . . 3  |-  N  =  ( Lines `  K )
3 fveq2 5696 . . . . . . 7  |-  ( k  =  K  ->  ( Atoms `  k )  =  ( Atoms `  K )
)
4 lineset.a . . . . . . 7  |-  A  =  ( Atoms `  K )
53, 4syl6eqr 2493 . . . . . 6  |-  ( k  =  K  ->  ( Atoms `  k )  =  A )
6 fveq2 5696 . . . . . . . . . . . . 13  |-  ( k  =  K  ->  ( le `  k )  =  ( le `  K
) )
7 lineset.l . . . . . . . . . . . . 13  |-  .<_  =  ( le `  K )
86, 7syl6eqr 2493 . . . . . . . . . . . 12  |-  ( k  =  K  ->  ( le `  k )  = 
.<_  )
98breqd 4308 . . . . . . . . . . 11  |-  ( k  =  K  ->  (
p ( le `  k ) ( q ( join `  k
) r )  <->  p  .<_  ( q ( join `  k
) r ) ) )
10 fveq2 5696 . . . . . . . . . . . . . 14  |-  ( k  =  K  ->  ( join `  k )  =  ( join `  K
) )
11 lineset.j . . . . . . . . . . . . . 14  |-  .\/  =  ( join `  K )
1210, 11syl6eqr 2493 . . . . . . . . . . . . 13  |-  ( k  =  K  ->  ( join `  k )  = 
.\/  )
1312oveqd 6113 . . . . . . . . . . . 12  |-  ( k  =  K  ->  (
q ( join `  k
) r )  =  ( q  .\/  r
) )
1413breq2d 4309 . . . . . . . . . . 11  |-  ( k  =  K  ->  (
p  .<_  ( q (
join `  k )
r )  <->  p  .<_  ( q  .\/  r ) ) )
159, 14bitrd 253 . . . . . . . . . 10  |-  ( k  =  K  ->  (
p ( le `  k ) ( q ( join `  k
) r )  <->  p  .<_  ( q  .\/  r ) ) )
165, 15rabeqbidv 2972 . . . . . . . . 9  |-  ( k  =  K  ->  { p  e.  ( Atoms `  k )  |  p ( le `  k ) ( q ( join `  k
) r ) }  =  { p  e.  A  |  p  .<_  ( q  .\/  r ) } )
1716eqeq2d 2454 . . . . . . . 8  |-  ( k  =  K  ->  (
s  =  { p  e.  ( Atoms `  k )  |  p ( le `  k ) ( q ( join `  k
) r ) }  <-> 
s  =  { p  e.  A  |  p  .<_  ( q  .\/  r
) } ) )
1817anbi2d 703 . . . . . . 7  |-  ( k  =  K  ->  (
( q  =/=  r  /\  s  =  {
p  e.  ( Atoms `  k )  |  p ( le `  k
) ( q (
join `  k )
r ) } )  <-> 
( q  =/=  r  /\  s  =  {
p  e.  A  |  p  .<_  ( q  .\/  r ) } ) ) )
195, 18rexeqbidv 2937 . . . . . 6  |-  ( k  =  K  ->  ( E. r  e.  ( Atoms `  k ) ( q  =/=  r  /\  s  =  { p  e.  ( Atoms `  k )  |  p ( le `  k ) ( q ( join `  k
) r ) } )  <->  E. r  e.  A  ( q  =/=  r  /\  s  =  {
p  e.  A  |  p  .<_  ( q  .\/  r ) } ) ) )
205, 19rexeqbidv 2937 . . . . 5  |-  ( k  =  K  ->  ( E. q  e.  ( Atoms `  k ) E. r  e.  ( Atoms `  k ) ( q  =/=  r  /\  s  =  { p  e.  (
Atoms `  k )  |  p ( le `  k ) ( q ( join `  k
) r ) } )  <->  E. q  e.  A  E. r  e.  A  ( q  =/=  r  /\  s  =  {
p  e.  A  |  p  .<_  ( q  .\/  r ) } ) ) )
2120abbidv 2562 . . . 4  |-  ( k  =  K  ->  { s  |  E. q  e.  ( Atoms `  k ) E. r  e.  ( Atoms `  k ) ( q  =/=  r  /\  s  =  { p  e.  ( Atoms `  k )  |  p ( le `  k ) ( q ( join `  k
) r ) } ) }  =  {
s  |  E. q  e.  A  E. r  e.  A  ( q  =/=  r  /\  s  =  { p  e.  A  |  p  .<_  ( q 
.\/  r ) } ) } )
22 df-lines 33150 . . . 4  |-  Lines  =  ( k  e.  _V  |->  { s  |  E. q  e.  ( Atoms `  k ) E. r  e.  ( Atoms `  k ) ( q  =/=  r  /\  s  =  { p  e.  ( Atoms `  k )  |  p ( le `  k ) ( q ( join `  k
) r ) } ) } )
23 fvex 5706 . . . . . 6  |-  ( Atoms `  K )  e.  _V
244, 23eqeltri 2513 . . . . 5  |-  A  e. 
_V
25 df-sn 3883 . . . . . . 7  |-  { {
p  e.  A  |  p  .<_  ( q  .\/  r ) } }  =  { s  |  s  =  { p  e.  A  |  p  .<_  ( q  .\/  r ) } }
26 snex 4538 . . . . . . 7  |-  { {
p  e.  A  |  p  .<_  ( q  .\/  r ) } }  e.  _V
2725, 26eqeltrri 2514 . . . . . 6  |-  { s  |  s  =  {
p  e.  A  |  p  .<_  ( q  .\/  r ) } }  e.  _V
28 simpr 461 . . . . . . 7  |-  ( ( q  =/=  r  /\  s  =  { p  e.  A  |  p  .<_  ( q  .\/  r
) } )  -> 
s  =  { p  e.  A  |  p  .<_  ( q  .\/  r
) } )
2928ss2abi 3429 . . . . . 6  |-  { s  |  ( q  =/=  r  /\  s  =  { p  e.  A  |  p  .<_  ( q 
.\/  r ) } ) }  C_  { s  |  s  =  {
p  e.  A  |  p  .<_  ( q  .\/  r ) } }
3027, 29ssexi 4442 . . . . 5  |-  { s  |  ( q  =/=  r  /\  s  =  { p  e.  A  |  p  .<_  ( q 
.\/  r ) } ) }  e.  _V
3124, 24, 30ab2rexex2 6574 . . . 4  |-  { s  |  E. q  e.  A  E. r  e.  A  ( q  =/=  r  /\  s  =  { p  e.  A  |  p  .<_  ( q 
.\/  r ) } ) }  e.  _V
3221, 22, 31fvmpt 5779 . . 3  |-  ( K  e.  _V  ->  ( Lines `  K )  =  { s  |  E. q  e.  A  E. r  e.  A  (
q  =/=  r  /\  s  =  { p  e.  A  |  p  .<_  ( q  .\/  r
) } ) } )
332, 32syl5eq 2487 . 2  |-  ( K  e.  _V  ->  N  =  { s  |  E. q  e.  A  E. r  e.  A  (
q  =/=  r  /\  s  =  { p  e.  A  |  p  .<_  ( q  .\/  r
) } ) } )
341, 33syl 16 1  |-  ( K  e.  B  ->  N  =  { s  |  E. q  e.  A  E. r  e.  A  (
q  =/=  r  /\  s  =  { p  e.  A  |  p  .<_  ( q  .\/  r
) } ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   {cab 2429    =/= wne 2611   E.wrex 2721   {crab 2724   _Vcvv 2977   {csn 3882   class class class wbr 4297   ` cfv 5423  (class class class)co 6096   lecple 14250   joincjn 15119   Atomscatm 32913   Linesclines 33143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-ov 6099  df-lines 33150
This theorem is referenced by:  isline  33388
  Copyright terms: Public domain W3C validator