Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linedegen Structured version   Unicode version

Theorem linedegen 30021
Description: When Line is applied with the same argument, the result is the empty set. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
linedegen  |-  ( ALine A )  =  (/)

Proof of Theorem linedegen
Dummy variables  l  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 6273 . 2  |-  ( ALine A )  =  (Line `  <. A ,  A >. )
2 neirr 2658 . . . . . . . . . . 11  |-  -.  A  =/=  A
3 simp3 996 . . . . . . . . . . 11  |-  ( ( A  e.  ( EE
`  n )  /\  A  e.  ( EE `  n )  /\  A  =/=  A )  ->  A  =/=  A )
42, 3mto 176 . . . . . . . . . 10  |-  -.  ( A  e.  ( EE `  n )  /\  A  e.  ( EE `  n
)  /\  A  =/=  A )
54intnanr 913 . . . . . . . . 9  |-  -.  (
( A  e.  ( EE `  n )  /\  A  e.  ( EE `  n )  /\  A  =/=  A
)  /\  l  =  [ <. A ,  A >. ] `'  Colinear  )
65a1i 11 . . . . . . . 8  |-  ( n  e.  NN  ->  -.  ( ( A  e.  ( EE `  n
)  /\  A  e.  ( EE `  n )  /\  A  =/=  A
)  /\  l  =  [ <. A ,  A >. ] `'  Colinear  ) )
76nrex 2909 . . . . . . 7  |-  -.  E. n  e.  NN  (
( A  e.  ( EE `  n )  /\  A  e.  ( EE `  n )  /\  A  =/=  A
)  /\  l  =  [ <. A ,  A >. ] `'  Colinear  )
87nex 1632 . . . . . 6  |-  -.  E. l E. n  e.  NN  ( ( A  e.  ( EE `  n
)  /\  A  e.  ( EE `  n )  /\  A  =/=  A
)  /\  l  =  [ <. A ,  A >. ] `'  Colinear  )
9 eleq1 2526 . . . . . . . . . . . 12  |-  ( x  =  A  ->  (
x  e.  ( EE
`  n )  <->  A  e.  ( EE `  n ) ) )
10 neeq1 2735 . . . . . . . . . . . 12  |-  ( x  =  A  ->  (
x  =/=  y  <->  A  =/=  y ) )
119, 103anbi13d 1299 . . . . . . . . . . 11  |-  ( x  =  A  ->  (
( x  e.  ( EE `  n )  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  <->  ( A  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  A  =/=  y
) ) )
12 opeq1 4203 . . . . . . . . . . . . 13  |-  ( x  =  A  ->  <. x ,  y >.  =  <. A ,  y >. )
1312eceq1d 7340 . . . . . . . . . . . 12  |-  ( x  =  A  ->  [ <. x ,  y >. ] `'  Colinear  =  [ <. A ,  y
>. ] `'  Colinear  )
1413eqeq2d 2468 . . . . . . . . . . 11  |-  ( x  =  A  ->  (
l  =  [ <. x ,  y >. ] `'  Colinear  <->  l  =  [ <. A ,  y
>. ] `'  Colinear  ) )
1511, 14anbi12d 708 . . . . . . . . . 10  |-  ( x  =  A  ->  (
( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  )  <->  ( ( A  e.  ( EE `  n )  /\  y  e.  ( EE `  n
)  /\  A  =/=  y )  /\  l  =  [ <. A ,  y
>. ] `'  Colinear  ) ) )
1615rexbidv 2965 . . . . . . . . 9  |-  ( x  =  A  ->  ( E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  )  <->  E. n  e.  NN  ( ( A  e.  ( EE `  n )  /\  y  e.  ( EE `  n
)  /\  A  =/=  y )  /\  l  =  [ <. A ,  y
>. ] `'  Colinear  ) ) )
1716exbidv 1719 . . . . . . . 8  |-  ( x  =  A  ->  ( E. l E. n  e.  NN  ( ( x  e.  ( EE `  n )  /\  y  e.  ( EE `  n
)  /\  x  =/=  y )  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  )  <->  E. l E. n  e.  NN  ( ( A  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  A  =/=  y
)  /\  l  =  [ <. A ,  y
>. ] `'  Colinear  ) ) )
18 eleq1 2526 . . . . . . . . . . . 12  |-  ( y  =  A  ->  (
y  e.  ( EE
`  n )  <->  A  e.  ( EE `  n ) ) )
19 neeq2 2737 . . . . . . . . . . . 12  |-  ( y  =  A  ->  ( A  =/=  y  <->  A  =/=  A ) )
2018, 193anbi23d 1300 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
( A  e.  ( EE `  n )  /\  y  e.  ( EE `  n )  /\  A  =/=  y
)  <->  ( A  e.  ( EE `  n
)  /\  A  e.  ( EE `  n )  /\  A  =/=  A
) ) )
21 opeq2 4204 . . . . . . . . . . . . 13  |-  ( y  =  A  ->  <. A , 
y >.  =  <. A ,  A >. )
2221eceq1d 7340 . . . . . . . . . . . 12  |-  ( y  =  A  ->  [ <. A ,  y >. ] `'  Colinear  =  [ <. A ,  A >. ] `'  Colinear  )
2322eqeq2d 2468 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
l  =  [ <. A ,  y >. ] `'  Colinear  <->  l  =  [ <. A ,  A >. ] `'  Colinear  ) )
2420, 23anbi12d 708 . . . . . . . . . 10  |-  ( y  =  A  ->  (
( ( A  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  A  =/=  y
)  /\  l  =  [ <. A ,  y
>. ] `'  Colinear  )  <->  ( ( A  e.  ( EE `  n )  /\  A  e.  ( EE `  n
)  /\  A  =/=  A )  /\  l  =  [ <. A ,  A >. ] `'  Colinear  ) ) )
2524rexbidv 2965 . . . . . . . . 9  |-  ( y  =  A  ->  ( E. n  e.  NN  ( ( A  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  A  =/=  y
)  /\  l  =  [ <. A ,  y
>. ] `'  Colinear  )  <->  E. n  e.  NN  ( ( A  e.  ( EE `  n )  /\  A  e.  ( EE `  n
)  /\  A  =/=  A )  /\  l  =  [ <. A ,  A >. ] `'  Colinear  ) ) )
2625exbidv 1719 . . . . . . . 8  |-  ( y  =  A  ->  ( E. l E. n  e.  NN  ( ( A  e.  ( EE `  n )  /\  y  e.  ( EE `  n
)  /\  A  =/=  y )  /\  l  =  [ <. A ,  y
>. ] `'  Colinear  )  <->  E. l E. n  e.  NN  ( ( A  e.  ( EE `  n
)  /\  A  e.  ( EE `  n )  /\  A  =/=  A
)  /\  l  =  [ <. A ,  A >. ] `'  Colinear  ) ) )
2717, 26opelopabg 4754 . . . . . . 7  |-  ( ( A  e.  _V  /\  A  e.  _V )  ->  ( <. A ,  A >.  e.  { <. x ,  y >.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) }  <->  E. l E. n  e.  NN  ( ( A  e.  ( EE `  n )  /\  A  e.  ( EE `  n
)  /\  A  =/=  A )  /\  l  =  [ <. A ,  A >. ] `'  Colinear  ) ) )
2827anidms 643 . . . . . 6  |-  ( A  e.  _V  ->  ( <. A ,  A >.  e. 
{ <. x ,  y
>.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) }  <->  E. l E. n  e.  NN  ( ( A  e.  ( EE `  n )  /\  A  e.  ( EE `  n
)  /\  A  =/=  A )  /\  l  =  [ <. A ,  A >. ] `'  Colinear  ) ) )
298, 28mtbiri 301 . . . . 5  |-  ( A  e.  _V  ->  -.  <. A ,  A >.  e. 
{ <. x ,  y
>.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) } )
30 elopaelxp 5061 . . . . . . 7  |-  ( <. A ,  A >.  e. 
{ <. x ,  y
>.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) }  ->  <. A ,  A >.  e.  ( _V  X.  _V ) )
31 opelxp1 5021 . . . . . . 7  |-  ( <. A ,  A >.  e.  ( _V  X.  _V )  ->  A  e.  _V )
3230, 31syl 16 . . . . . 6  |-  ( <. A ,  A >.  e. 
{ <. x ,  y
>.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) }  ->  A  e.  _V )
3332con3i 135 . . . . 5  |-  ( -.  A  e.  _V  ->  -. 
<. A ,  A >.  e. 
{ <. x ,  y
>.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) } )
3429, 33pm2.61i 164 . . . 4  |-  -.  <. A ,  A >.  e.  { <. x ,  y >.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n )  /\  y  e.  ( EE `  n
)  /\  x  =/=  y )  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) }
35 df-line2 30015 . . . . . . 7  |- Line  =  { <. <. x ,  y
>. ,  l >.  |  E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) }
3635dmeqi 5193 . . . . . 6  |-  dom Line  =  dom  {
<. <. x ,  y
>. ,  l >.  |  E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) }
37 dmoprab 6356 . . . . . 6  |-  dom  { <. <. x ,  y
>. ,  l >.  |  E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) }  =  { <. x ,  y >.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) }
3836, 37eqtri 2483 . . . . 5  |-  dom Line  =  { <. x ,  y >.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n )  /\  y  e.  ( EE `  n
)  /\  x  =/=  y )  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) }
3938eleq2i 2532 . . . 4  |-  ( <. A ,  A >.  e. 
dom Line 
<-> 
<. A ,  A >.  e. 
{ <. x ,  y
>.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) } )
4034, 39mtbir 297 . . 3  |-  -.  <. A ,  A >.  e.  dom Line
41 ndmfv 5872 . . 3  |-  ( -. 
<. A ,  A >.  e. 
dom Line  ->  (Line `  <. A ,  A >. )  =  (/) )
4240, 41ax-mp 5 . 2  |-  (Line `  <. A ,  A >. )  =  (/)
431, 42eqtri 2483 1  |-  ( ALine A )  =  (/)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398   E.wex 1617    e. wcel 1823    =/= wne 2649   E.wrex 2805   _Vcvv 3106   (/)c0 3783   <.cop 4022   {copab 4496    X. cxp 4986   `'ccnv 4987   dom cdm 4988   ` cfv 5570  (class class class)co 6270   {coprab 6271   [cec 7301   NNcn 10531   EEcee 24393    Colinear ccolin 29915  Linecline2 30012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-xp 4994  df-cnv 4996  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fv 5578  df-ov 6273  df-oprab 6274  df-ec 7305  df-line2 30015
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator