Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linecom Structured version   Unicode version

Theorem linecom 28320
Description: Commutativity law for lines. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 28-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
linecom  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q ) )  -> 
( PLine Q )  =  ( QLine P
) )

Proof of Theorem linecom
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simp1 988 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q )  /\  x  e.  ( EE `  N
) )  ->  N  e.  NN )
2 simp3 990 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q )  /\  x  e.  ( EE `  N
) )  ->  x  e.  ( EE `  N
) )
3 simp21 1021 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q )  /\  x  e.  ( EE `  N
) )  ->  P  e.  ( EE `  N
) )
4 simp22 1022 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q )  /\  x  e.  ( EE `  N
) )  ->  Q  e.  ( EE `  N
) )
5 colinearperm1 28232 . . . . 5  |-  ( ( N  e.  NN  /\  ( x  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  -> 
( x  Colinear  <. P ,  Q >. 
<->  x  Colinear  <. Q ,  P >. ) )
61, 2, 3, 4, 5syl13anc 1221 . . . 4  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q )  /\  x  e.  ( EE `  N
) )  ->  (
x  Colinear  <. P ,  Q >.  <-> 
x  Colinear  <. Q ,  P >. ) )
763expa 1188 . . 3  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
) )  /\  x  e.  ( EE `  N
) )  ->  (
x  Colinear  <. P ,  Q >.  <-> 
x  Colinear  <. Q ,  P >. ) )
87rabbidva 3063 . 2  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q ) )  ->  { x  e.  ( EE `  N )  |  x  Colinear  <. P ,  Q >. }  =  { x  e.  ( EE `  N
)  |  x  Colinear  <. Q ,  P >. } )
9 fvline2 28316 . 2  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q ) )  -> 
( PLine Q )  =  { x  e.  ( EE `  N
)  |  x  Colinear  <. P ,  Q >. } )
10 necom 2718 . . . . 5  |-  ( P  =/=  Q  <->  Q  =/=  P )
11103anbi3i 1181 . . . 4  |-  ( ( P  e.  ( EE
`  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q )  <->  ( P  e.  ( EE `  N
)  /\  Q  e.  ( EE `  N )  /\  Q  =/=  P
) )
12 3ancoma 972 . . . 4  |-  ( ( P  e.  ( EE
`  N )  /\  Q  e.  ( EE `  N )  /\  Q  =/=  P )  <->  ( Q  e.  ( EE `  N
)  /\  P  e.  ( EE `  N )  /\  Q  =/=  P
) )
1311, 12bitri 249 . . 3  |-  ( ( P  e.  ( EE
`  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q )  <->  ( Q  e.  ( EE `  N
)  /\  P  e.  ( EE `  N )  /\  Q  =/=  P
) )
14 fvline2 28316 . . 3  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  Q  =/=  P ) )  -> 
( QLine P )  =  { x  e.  ( EE `  N
)  |  x  Colinear  <. Q ,  P >. } )
1513, 14sylan2b 475 . 2  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q ) )  -> 
( QLine P )  =  { x  e.  ( EE `  N
)  |  x  Colinear  <. Q ,  P >. } )
168, 9, 153eqtr4d 2503 1  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q ) )  -> 
( PLine Q )  =  ( QLine P
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2645   {crab 2800   <.cop 3986   class class class wbr 4395   ` cfv 5521  (class class class)co 6195   NNcn 10428   EEcee 23281    Colinear ccolin 28207  Linecline2 28304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477  ax-inf2 7953  ax-cnex 9444  ax-resscn 9445  ax-1cn 9446  ax-icn 9447  ax-addcl 9448  ax-addrcl 9449  ax-mulcl 9450  ax-mulrcl 9451  ax-mulcom 9452  ax-addass 9453  ax-mulass 9454  ax-distr 9455  ax-i2m1 9456  ax-1ne0 9457  ax-1rid 9458  ax-rnegex 9459  ax-rrecex 9460  ax-cnre 9461  ax-pre-lttri 9462  ax-pre-lttrn 9463  ax-pre-ltadd 9464  ax-pre-mulgt0 9465  ax-pre-sup 9466
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-nel 2648  df-ral 2801  df-rex 2802  df-reu 2803  df-rmo 2804  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-pss 3447  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4195  df-int 4232  df-iun 4276  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4489  df-eprel 4735  df-id 4739  df-po 4744  df-so 4745  df-fr 4782  df-se 4783  df-we 4784  df-ord 4825  df-on 4826  df-lim 4827  df-suc 4828  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-isom 5530  df-riota 6156  df-ov 6198  df-oprab 6199  df-mpt2 6200  df-om 6582  df-1st 6682  df-2nd 6683  df-recs 6937  df-rdg 6971  df-1o 7025  df-oadd 7029  df-er 7206  df-ec 7208  df-map 7321  df-en 7416  df-dom 7417  df-sdom 7418  df-fin 7419  df-sup 7797  df-oi 7830  df-card 8215  df-pnf 9526  df-mnf 9527  df-xr 9528  df-ltxr 9529  df-le 9530  df-sub 9703  df-neg 9704  df-div 10100  df-nn 10429  df-2 10486  df-3 10487  df-n0 10686  df-z 10753  df-uz 10968  df-rp 11098  df-ico 11412  df-icc 11413  df-fz 11550  df-fzo 11661  df-seq 11919  df-exp 11978  df-hash 12216  df-cj 12701  df-re 12702  df-im 12703  df-sqr 12837  df-abs 12838  df-clim 13079  df-sum 13277  df-ee 23284  df-btwn 23285  df-cgr 23286  df-colinear 28209  df-line2 28307
This theorem is referenced by:  linerflx2  28321  linethru  28323
  Copyright terms: Public domain W3C validator