MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindsmm Structured version   Unicode version

Theorem lindsmm 18709
Description: Linear independence of a set is unchanged by injective linear functions. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Hypotheses
Ref Expression
lindfmm.b  |-  B  =  ( Base `  S
)
lindfmm.c  |-  C  =  ( Base `  T
)
Assertion
Ref Expression
lindsmm  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  ( F  e.  (LIndS `  S
)  <->  ( G " F )  e.  (LIndS `  T ) ) )

Proof of Theorem lindsmm
StepHypRef Expression
1 ibar 504 . . . 4  |-  ( F 
C_  B  ->  (
(  _I  |`  F ) LIndF 
S  <->  ( F  C_  B  /\  (  _I  |`  F ) LIndF 
S ) ) )
213ad2ant3 1019 . . 3  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  (
(  _I  |`  F ) LIndF 
S  <->  ( F  C_  B  /\  (  _I  |`  F ) LIndF 
S ) ) )
3 f1oi 5856 . . . . . 6  |-  (  _I  |`  F ) : F -1-1-onto-> F
4 f1of 5821 . . . . . 6  |-  ( (  _I  |`  F ) : F -1-1-onto-> F  ->  (  _I  |`  F ) : F --> F )
53, 4ax-mp 5 . . . . 5  |-  (  _I  |`  F ) : F --> F
6 simp3 998 . . . . 5  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  F  C_  B )
7 fss 5744 . . . . 5  |-  ( ( (  _I  |`  F ) : F --> F  /\  F  C_  B )  -> 
(  _I  |`  F ) : F --> B )
85, 6, 7sylancr 663 . . . 4  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  (  _I  |`  F ) : F --> B )
9 lindfmm.b . . . . 5  |-  B  =  ( Base `  S
)
10 lindfmm.c . . . . 5  |-  C  =  ( Base `  T
)
119, 10lindfmm 18708 . . . 4  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  (  _I  |`  F ) : F --> B )  -> 
( (  _I  |`  F ) LIndF 
S  <->  ( G  o.  (  _I  |`  F ) ) LIndF  T ) )
128, 11syld3an3 1273 . . 3  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  (
(  _I  |`  F ) LIndF 
S  <->  ( G  o.  (  _I  |`  F ) ) LIndF  T ) )
132, 12bitr3d 255 . 2  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  (
( F  C_  B  /\  (  _I  |`  F ) LIndF 
S )  <->  ( G  o.  (  _I  |`  F ) ) LIndF  T ) )
14 lmhmlmod1 17527 . . . 4  |-  ( G  e.  ( S LMHom  T
)  ->  S  e.  LMod )
15143ad2ant1 1017 . . 3  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  S  e.  LMod )
169islinds 18690 . . 3  |-  ( S  e.  LMod  ->  ( F  e.  (LIndS `  S
)  <->  ( F  C_  B  /\  (  _I  |`  F ) LIndF 
S ) ) )
1715, 16syl 16 . 2  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  ( F  e.  (LIndS `  S
)  <->  ( F  C_  B  /\  (  _I  |`  F ) LIndF 
S ) ) )
18 lmhmlmod2 17526 . . . . . . 7  |-  ( G  e.  ( S LMHom  T
)  ->  T  e.  LMod )
19183ad2ant1 1017 . . . . . 6  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  T  e.  LMod )
2019adantr 465 . . . . 5  |-  ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C  /\  F  C_  B )  /\  ( G " F )  e.  (LIndS `  T
) )  ->  T  e.  LMod )
21 simpr 461 . . . . 5  |-  ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C  /\  F  C_  B )  /\  ( G " F )  e.  (LIndS `  T
) )  ->  ( G " F )  e.  (LIndS `  T )
)
22 f1ores 5835 . . . . . . . 8  |-  ( ( G : B -1-1-> C  /\  F  C_  B )  ->  ( G  |`  F ) : F -1-1-onto-> ( G " F ) )
23 f1of1 5820 . . . . . . . 8  |-  ( ( G  |`  F ) : F -1-1-onto-> ( G " F
)  ->  ( G  |`  F ) : F -1-1-> ( G " F ) )
2422, 23syl 16 . . . . . . 7  |-  ( ( G : B -1-1-> C  /\  F  C_  B )  ->  ( G  |`  F ) : F -1-1-> ( G " F ) )
25243adant1 1014 . . . . . 6  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  ( G  |`  F ) : F -1-1-> ( G " F ) )
2625adantr 465 . . . . 5  |-  ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C  /\  F  C_  B )  /\  ( G " F )  e.  (LIndS `  T
) )  ->  ( G  |`  F ) : F -1-1-> ( G " F ) )
27 f1linds 18706 . . . . 5  |-  ( ( T  e.  LMod  /\  ( G " F )  e.  (LIndS `  T )  /\  ( G  |`  F ) : F -1-1-> ( G
" F ) )  ->  ( G  |`  F ) LIndF  T )
2820, 21, 26, 27syl3anc 1228 . . . 4  |-  ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C  /\  F  C_  B )  /\  ( G " F )  e.  (LIndS `  T
) )  ->  ( G  |`  F ) LIndF  T
)
29 df-ima 5017 . . . . 5  |-  ( G
" F )  =  ran  ( G  |`  F )
30 lindfrn 18702 . . . . . 6  |-  ( ( T  e.  LMod  /\  ( G  |`  F ) LIndF  T
)  ->  ran  ( G  |`  F )  e.  (LIndS `  T ) )
3119, 30sylan 471 . . . . 5  |-  ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C  /\  F  C_  B )  /\  ( G  |`  F ) LIndF 
T )  ->  ran  ( G  |`  F )  e.  (LIndS `  T
) )
3229, 31syl5eqel 2559 . . . 4  |-  ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C  /\  F  C_  B )  /\  ( G  |`  F ) LIndF 
T )  ->  ( G " F )  e.  (LIndS `  T )
)
3328, 32impbida 830 . . 3  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  (
( G " F
)  e.  (LIndS `  T )  <->  ( G  |`  F ) LIndF  T ) )
34 coires1 5530 . . . 4  |-  ( G  o.  (  _I  |`  F ) )  =  ( G  |`  F )
3534breq1i 4459 . . 3  |-  ( ( G  o.  (  _I  |`  F ) ) LIndF  T  <->  ( G  |`  F ) LIndF  T )
3633, 35syl6bbr 263 . 2  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  (
( G " F
)  e.  (LIndS `  T )  <->  ( G  o.  (  _I  |`  F ) ) LIndF  T ) )
3713, 17, 363bitr4d 285 1  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  ( F  e.  (LIndS `  S
)  <->  ( G " F )  e.  (LIndS `  T ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    C_ wss 3481   class class class wbr 4452    _I cid 4795   ran crn 5005    |` cres 5006   "cima 5007    o. ccom 5008   -->wf 5589   -1-1->wf1 5590   -1-1-onto->wf1o 5592   ` cfv 5593  (class class class)co 6294   Basecbs 14502   LModclmod 17360   LMHom clmhm 17513   LIndF clindf 18685  LIndSclinds 18686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4563  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6586  ax-cnex 9558  ax-resscn 9559  ax-1cn 9560  ax-icn 9561  ax-addcl 9562  ax-addrcl 9563  ax-mulcl 9564  ax-mulrcl 9565  ax-mulcom 9566  ax-addass 9567  ax-mulass 9568  ax-distr 9569  ax-i2m1 9570  ax-1ne0 9571  ax-1rid 9572  ax-rnegex 9573  ax-rrecex 9574  ax-cnre 9575  ax-pre-lttri 9576  ax-pre-lttrn 9577  ax-pre-ltadd 9578  ax-pre-mulgt0 9579
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4251  df-int 4288  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-riota 6255  df-ov 6297  df-oprab 6298  df-mpt2 6299  df-om 6695  df-1st 6794  df-2nd 6795  df-recs 7052  df-rdg 7086  df-er 7321  df-en 7527  df-dom 7528  df-sdom 7529  df-pnf 9640  df-mnf 9641  df-xr 9642  df-ltxr 9643  df-le 9644  df-sub 9817  df-neg 9818  df-nn 10547  df-2 10604  df-ndx 14505  df-slot 14506  df-base 14507  df-sets 14508  df-ress 14509  df-plusg 14580  df-0g 14709  df-mgm 15741  df-sgrp 15764  df-mnd 15774  df-grp 15906  df-minusg 15907  df-sbg 15908  df-subg 16047  df-ghm 16114  df-mgp 16991  df-ur 17003  df-ring 17049  df-lmod 17362  df-lss 17427  df-lsp 17466  df-lmhm 17516  df-lindf 18687  df-linds 18688
This theorem is referenced by:  lindsmm2  18710
  Copyright terms: Public domain W3C validator