MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindfrn Structured version   Visualization version   Unicode version

Theorem lindfrn 19379
Description: The range of an independent family is an independent set. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Assertion
Ref Expression
lindfrn  |-  ( ( W  e.  LMod  /\  F LIndF  W )  ->  ran  F  e.  (LIndS `  W )
)

Proof of Theorem lindfrn
Dummy variables  k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2451 . . . . 5  |-  ( Base `  W )  =  (
Base `  W )
21lindff 19373 . . . 4  |-  ( ( F LIndF  W  /\  W  e.  LMod )  ->  F : dom  F --> ( Base `  W ) )
32ancoms 455 . . 3  |-  ( ( W  e.  LMod  /\  F LIndF  W )  ->  F : dom  F --> ( Base `  W
) )
4 frn 5735 . . 3  |-  ( F : dom  F --> ( Base `  W )  ->  ran  F 
C_  ( Base `  W
) )
53, 4syl 17 . 2  |-  ( ( W  e.  LMod  /\  F LIndF  W )  ->  ran  F  C_  ( Base `  W )
)
6 simpll 760 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  F LIndF  W )  /\  y  e.  dom  F )  ->  W  e.  LMod )
7 imassrn 5179 . . . . . . . . 9  |-  ( F
" ( dom  F  \  { y } ) )  C_  ran  F
87, 5syl5ss 3443 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  F LIndF  W )  ->  ( F " ( dom  F  \  { y } ) )  C_  ( Base `  W ) )
98adantr 467 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  F LIndF  W )  /\  y  e.  dom  F )  ->  ( F "
( dom  F  \  {
y } ) ) 
C_  ( Base `  W
) )
10 ffun 5731 . . . . . . . . 9  |-  ( F : dom  F --> ( Base `  W )  ->  Fun  F )
113, 10syl 17 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  F LIndF  W )  ->  Fun  F )
12 eldifsn 4097 . . . . . . . . . 10  |-  ( x  e.  ( ran  F  \  { ( F `  y ) } )  <-> 
( x  e.  ran  F  /\  x  =/=  ( F `  y )
) )
13 funfn 5611 . . . . . . . . . . . . . 14  |-  ( Fun 
F  <->  F  Fn  dom  F )
14 fvelrnb 5912 . . . . . . . . . . . . . 14  |-  ( F  Fn  dom  F  -> 
( x  e.  ran  F  <->  E. k  e.  dom  F ( F `  k
)  =  x ) )
1513, 14sylbi 199 . . . . . . . . . . . . 13  |-  ( Fun 
F  ->  ( x  e.  ran  F  <->  E. k  e.  dom  F ( F `
 k )  =  x ) )
1615adantr 467 . . . . . . . . . . . 12  |-  ( ( Fun  F  /\  y  e.  dom  F )  -> 
( x  e.  ran  F  <->  E. k  e.  dom  F ( F `  k
)  =  x ) )
17 difss 3560 . . . . . . . . . . . . . . . . . 18  |-  ( dom 
F  \  { y } )  C_  dom  F
1817jctr 545 . . . . . . . . . . . . . . . . 17  |-  ( Fun 
F  ->  ( Fun  F  /\  ( dom  F  \  { y } ) 
C_  dom  F )
)
1918ad2antrr 732 . . . . . . . . . . . . . . . 16  |-  ( ( ( Fun  F  /\  y  e.  dom  F )  /\  ( k  e. 
dom  F  /\  ( F `  k )  =/=  ( F `  y
) ) )  -> 
( Fun  F  /\  ( dom  F  \  {
y } )  C_  dom  F ) )
20 simpl 459 . . . . . . . . . . . . . . . . . 18  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  =/=  ( F `
 y ) )  ->  k  e.  dom  F )
21 fveq2 5865 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  y  ->  ( F `  k )  =  ( F `  y ) )
2221necon3i 2656 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F `  k )  =/=  ( F `  y )  ->  k  =/=  y )
2322adantl 468 . . . . . . . . . . . . . . . . . 18  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  =/=  ( F `
 y ) )  ->  k  =/=  y
)
24 eldifsn 4097 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  ( dom  F  \  { y } )  <-> 
( k  e.  dom  F  /\  k  =/=  y
) )
2520, 23, 24sylanbrc 670 . . . . . . . . . . . . . . . . 17  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  =/=  ( F `
 y ) )  ->  k  e.  ( dom  F  \  {
y } ) )
2625adantl 468 . . . . . . . . . . . . . . . 16  |-  ( ( ( Fun  F  /\  y  e.  dom  F )  /\  ( k  e. 
dom  F  /\  ( F `  k )  =/=  ( F `  y
) ) )  -> 
k  e.  ( dom 
F  \  { y } ) )
27 funfvima2 6141 . . . . . . . . . . . . . . . 16  |-  ( ( Fun  F  /\  ( dom  F  \  { y } )  C_  dom  F )  ->  ( k  e.  ( dom  F  \  { y } )  ->  ( F `  k )  e.  ( F " ( dom 
F  \  { y } ) ) ) )
2819, 26, 27sylc 62 . . . . . . . . . . . . . . 15  |-  ( ( ( Fun  F  /\  y  e.  dom  F )  /\  ( k  e. 
dom  F  /\  ( F `  k )  =/=  ( F `  y
) ) )  -> 
( F `  k
)  e.  ( F
" ( dom  F  \  { y } ) ) )
2928expr 620 . . . . . . . . . . . . . 14  |-  ( ( ( Fun  F  /\  y  e.  dom  F )  /\  k  e.  dom  F )  ->  ( ( F `  k )  =/=  ( F `  y
)  ->  ( F `  k )  e.  ( F " ( dom 
F  \  { y } ) ) ) )
30 neeq1 2686 . . . . . . . . . . . . . . 15  |-  ( ( F `  k )  =  x  ->  (
( F `  k
)  =/=  ( F `
 y )  <->  x  =/=  ( F `  y ) ) )
31 eleq1 2517 . . . . . . . . . . . . . . 15  |-  ( ( F `  k )  =  x  ->  (
( F `  k
)  e.  ( F
" ( dom  F  \  { y } ) )  <->  x  e.  ( F " ( dom  F  \  { y } ) ) ) )
3230, 31imbi12d 322 . . . . . . . . . . . . . 14  |-  ( ( F `  k )  =  x  ->  (
( ( F `  k )  =/=  ( F `  y )  ->  ( F `  k
)  e.  ( F
" ( dom  F  \  { y } ) ) )  <->  ( x  =/=  ( F `  y
)  ->  x  e.  ( F " ( dom 
F  \  { y } ) ) ) ) )
3329, 32syl5ibcom 224 . . . . . . . . . . . . 13  |-  ( ( ( Fun  F  /\  y  e.  dom  F )  /\  k  e.  dom  F )  ->  ( ( F `  k )  =  x  ->  ( x  =/=  ( F `  y )  ->  x  e.  ( F " ( dom  F  \  { y } ) ) ) ) )
3433rexlimdva 2879 . . . . . . . . . . . 12  |-  ( ( Fun  F  /\  y  e.  dom  F )  -> 
( E. k  e. 
dom  F ( F `
 k )  =  x  ->  ( x  =/=  ( F `  y
)  ->  x  e.  ( F " ( dom 
F  \  { y } ) ) ) ) )
3516, 34sylbid 219 . . . . . . . . . . 11  |-  ( ( Fun  F  /\  y  e.  dom  F )  -> 
( x  e.  ran  F  ->  ( x  =/=  ( F `  y
)  ->  x  e.  ( F " ( dom 
F  \  { y } ) ) ) ) )
3635impd 433 . . . . . . . . . 10  |-  ( ( Fun  F  /\  y  e.  dom  F )  -> 
( ( x  e. 
ran  F  /\  x  =/=  ( F `  y
) )  ->  x  e.  ( F " ( dom  F  \  { y } ) ) ) )
3712, 36syl5bi 221 . . . . . . . . 9  |-  ( ( Fun  F  /\  y  e.  dom  F )  -> 
( x  e.  ( ran  F  \  {
( F `  y
) } )  ->  x  e.  ( F " ( dom  F  \  { y } ) ) ) )
3837ssrdv 3438 . . . . . . . 8  |-  ( ( Fun  F  /\  y  e.  dom  F )  -> 
( ran  F  \  {
( F `  y
) } )  C_  ( F " ( dom 
F  \  { y } ) ) )
3911, 38sylan 474 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  F LIndF  W )  /\  y  e.  dom  F )  ->  ( ran  F  \  { ( F `  y ) } ) 
C_  ( F "
( dom  F  \  {
y } ) ) )
40 eqid 2451 . . . . . . . 8  |-  ( LSpan `  W )  =  (
LSpan `  W )
411, 40lspss 18207 . . . . . . 7  |-  ( ( W  e.  LMod  /\  ( F " ( dom  F  \  { y } ) )  C_  ( Base `  W )  /\  ( ran  F  \  { ( F `  y ) } )  C_  ( F " ( dom  F  \  { y } ) ) )  ->  (
( LSpan `  W ) `  ( ran  F  \  { ( F `  y ) } ) )  C_  ( ( LSpan `  W ) `  ( F " ( dom 
F  \  { y } ) ) ) )
426, 9, 39, 41syl3anc 1268 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  F LIndF  W )  /\  y  e.  dom  F )  ->  ( ( LSpan `  W ) `  ( ran  F  \  { ( F `  y ) } ) )  C_  ( ( LSpan `  W
) `  ( F " ( dom  F  \  { y } ) ) ) )
4342adantrr 723 . . . . 5  |-  ( ( ( W  e.  LMod  /\  F LIndF  W )  /\  ( y  e.  dom  F  /\  k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } ) ) )  ->  ( ( LSpan `  W ) `  ( ran  F  \  { ( F `  y ) } ) )  C_  ( ( LSpan `  W
) `  ( F " ( dom  F  \  { y } ) ) ) )
44 simplr 762 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  F LIndF  W )  /\  ( y  e.  dom  F  /\  k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } ) ) )  ->  F LIndF  W )
45 simprl 764 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  F LIndF  W )  /\  ( y  e.  dom  F  /\  k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } ) ) )  ->  y  e.  dom  F )
46 eldifi 3555 . . . . . . 7  |-  ( k  e.  ( ( Base `  (Scalar `  W )
)  \  { ( 0g `  (Scalar `  W
) ) } )  ->  k  e.  (
Base `  (Scalar `  W
) ) )
4746ad2antll 735 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  F LIndF  W )  /\  ( y  e.  dom  F  /\  k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } ) ) )  ->  k  e.  (
Base `  (Scalar `  W
) ) )
48 eldifsni 4098 . . . . . . 7  |-  ( k  e.  ( ( Base `  (Scalar `  W )
)  \  { ( 0g `  (Scalar `  W
) ) } )  ->  k  =/=  ( 0g `  (Scalar `  W
) ) )
4948ad2antll 735 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  F LIndF  W )  /\  ( y  e.  dom  F  /\  k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } ) ) )  ->  k  =/=  ( 0g `  (Scalar `  W
) ) )
50 eqid 2451 . . . . . . 7  |-  ( .s
`  W )  =  ( .s `  W
)
51 eqid 2451 . . . . . . 7  |-  (Scalar `  W )  =  (Scalar `  W )
52 eqid 2451 . . . . . . 7  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
53 eqid 2451 . . . . . . 7  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
5450, 40, 51, 52, 53lindfind 19374 . . . . . 6  |-  ( ( ( F LIndF  W  /\  y  e.  dom  F )  /\  ( k  e.  ( Base `  (Scalar `  W ) )  /\  k  =/=  ( 0g `  (Scalar `  W ) ) ) )  ->  -.  ( k ( .s
`  W ) ( F `  y ) )  e.  ( (
LSpan `  W ) `  ( F " ( dom 
F  \  { y } ) ) ) )
5544, 45, 47, 49, 54syl22anc 1269 . . . . 5  |-  ( ( ( W  e.  LMod  /\  F LIndF  W )  /\  ( y  e.  dom  F  /\  k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } ) ) )  ->  -.  ( k
( .s `  W
) ( F `  y ) )  e.  ( ( LSpan `  W
) `  ( F " ( dom  F  \  { y } ) ) ) )
5643, 55ssneldd 3435 . . . 4  |-  ( ( ( W  e.  LMod  /\  F LIndF  W )  /\  ( y  e.  dom  F  /\  k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } ) ) )  ->  -.  ( k
( .s `  W
) ( F `  y ) )  e.  ( ( LSpan `  W
) `  ( ran  F 
\  { ( F `
 y ) } ) ) )
5756ralrimivva 2809 . . 3  |-  ( ( W  e.  LMod  /\  F LIndF  W )  ->  A. y  e.  dom  F A. k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } )  -.  (
k ( .s `  W ) ( F `
 y ) )  e.  ( ( LSpan `  W ) `  ( ran  F  \  { ( F `  y ) } ) ) )
5811, 13sylib 200 . . . 4  |-  ( ( W  e.  LMod  /\  F LIndF  W )  ->  F  Fn  dom  F )
59 oveq2 6298 . . . . . . . 8  |-  ( x  =  ( F `  y )  ->  (
k ( .s `  W ) x )  =  ( k ( .s `  W ) ( F `  y
) ) )
60 sneq 3978 . . . . . . . . . 10  |-  ( x  =  ( F `  y )  ->  { x }  =  { ( F `  y ) } )
6160difeq2d 3551 . . . . . . . . 9  |-  ( x  =  ( F `  y )  ->  ( ran  F  \  { x } )  =  ( ran  F  \  {
( F `  y
) } ) )
6261fveq2d 5869 . . . . . . . 8  |-  ( x  =  ( F `  y )  ->  (
( LSpan `  W ) `  ( ran  F  \  { x } ) )  =  ( (
LSpan `  W ) `  ( ran  F  \  {
( F `  y
) } ) ) )
6359, 62eleq12d 2523 . . . . . . 7  |-  ( x  =  ( F `  y )  ->  (
( k ( .s
`  W ) x )  e.  ( (
LSpan `  W ) `  ( ran  F  \  {
x } ) )  <-> 
( k ( .s
`  W ) ( F `  y ) )  e.  ( (
LSpan `  W ) `  ( ran  F  \  {
( F `  y
) } ) ) ) )
6463notbid 296 . . . . . 6  |-  ( x  =  ( F `  y )  ->  ( -.  ( k ( .s
`  W ) x )  e.  ( (
LSpan `  W ) `  ( ran  F  \  {
x } ) )  <->  -.  ( k ( .s
`  W ) ( F `  y ) )  e.  ( (
LSpan `  W ) `  ( ran  F  \  {
( F `  y
) } ) ) ) )
6564ralbidv 2827 . . . . 5  |-  ( x  =  ( F `  y )  ->  ( A. k  e.  (
( Base `  (Scalar `  W
) )  \  {
( 0g `  (Scalar `  W ) ) } )  -.  ( k ( .s `  W
) x )  e.  ( ( LSpan `  W
) `  ( ran  F 
\  { x }
) )  <->  A. k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } )  -.  (
k ( .s `  W ) ( F `
 y ) )  e.  ( ( LSpan `  W ) `  ( ran  F  \  { ( F `  y ) } ) ) ) )
6665ralrn 6025 . . . 4  |-  ( F  Fn  dom  F  -> 
( A. x  e. 
ran  F A. k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } )  -.  (
k ( .s `  W ) x )  e.  ( ( LSpan `  W ) `  ( ran  F  \  { x } ) )  <->  A. y  e.  dom  F A. k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } )  -.  (
k ( .s `  W ) ( F `
 y ) )  e.  ( ( LSpan `  W ) `  ( ran  F  \  { ( F `  y ) } ) ) ) )
6758, 66syl 17 . . 3  |-  ( ( W  e.  LMod  /\  F LIndF  W )  ->  ( A. x  e.  ran  F A. k  e.  ( ( Base `  (Scalar `  W
) )  \  {
( 0g `  (Scalar `  W ) ) } )  -.  ( k ( .s `  W
) x )  e.  ( ( LSpan `  W
) `  ( ran  F 
\  { x }
) )  <->  A. y  e.  dom  F A. k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } )  -.  (
k ( .s `  W ) ( F `
 y ) )  e.  ( ( LSpan `  W ) `  ( ran  F  \  { ( F `  y ) } ) ) ) )
6857, 67mpbird 236 . 2  |-  ( ( W  e.  LMod  /\  F LIndF  W )  ->  A. x  e.  ran  F A. k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } )  -.  (
k ( .s `  W ) x )  e.  ( ( LSpan `  W ) `  ( ran  F  \  { x } ) ) )
691, 50, 40, 51, 53, 52islinds2 19371 . . 3  |-  ( W  e.  LMod  ->  ( ran 
F  e.  (LIndS `  W )  <->  ( ran  F 
C_  ( Base `  W
)  /\  A. x  e.  ran  F A. k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } )  -.  (
k ( .s `  W ) x )  e.  ( ( LSpan `  W ) `  ( ran  F  \  { x } ) ) ) ) )
7069adantr 467 . 2  |-  ( ( W  e.  LMod  /\  F LIndF  W )  ->  ( ran  F  e.  (LIndS `  W
)  <->  ( ran  F  C_  ( Base `  W
)  /\  A. x  e.  ran  F A. k  e.  ( ( Base `  (Scalar `  W ) )  \  { ( 0g `  (Scalar `  W ) ) } )  -.  (
k ( .s `  W ) x )  e.  ( ( LSpan `  W ) `  ( ran  F  \  { x } ) ) ) ) )
715, 68, 70mpbir2and 933 1  |-  ( ( W  e.  LMod  /\  F LIndF  W )  ->  ran  F  e.  (LIndS `  W )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1444    e. wcel 1887    =/= wne 2622   A.wral 2737   E.wrex 2738    \ cdif 3401    C_ wss 3404   {csn 3968   class class class wbr 4402   dom cdm 4834   ran crn 4835   "cima 4837   Fun wfun 5576    Fn wfn 5577   -->wf 5578   ` cfv 5582  (class class class)co 6290   Basecbs 15121  Scalarcsca 15193   .scvsca 15194   0gc0g 15338   LModclmod 18091   LSpanclspn 18194   LIndF clindf 19362  LIndSclinds 19363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-slot 15125  df-base 15126  df-0g 15340  df-mgm 16488  df-sgrp 16527  df-mnd 16537  df-grp 16673  df-lmod 18093  df-lss 18156  df-lsp 18195  df-lindf 19364  df-linds 19365
This theorem is referenced by:  islindf3  19384  lindsmm  19386
  Copyright terms: Public domain W3C validator