MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindfres Structured version   Visualization version   Unicode version

Theorem lindfres 19374
Description: Any restriction of an independent family is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Assertion
Ref Expression
lindfres  |-  ( ( W  e.  LMod  /\  F LIndF  W )  ->  ( F  |`  X ) LIndF  W )

Proof of Theorem lindfres
StepHypRef Expression
1 coires1 5352 . . 3  |-  ( F  o.  (  _I  |`  dom  ( F  |`  X ) ) )  =  ( F  |`  dom  ( F  |`  X ) )
2 resdmres 5325 . . 3  |-  ( F  |`  dom  ( F  |`  X ) )  =  ( F  |`  X )
31, 2eqtri 2472 . 2  |-  ( F  o.  (  _I  |`  dom  ( F  |`  X ) ) )  =  ( F  |`  X )
4 f1oi 5848 . . . . 5  |-  (  _I  |`  dom  ( F  |`  X ) ) : dom  ( F  |`  X ) -1-1-onto-> dom  ( F  |`  X )
5 f1of1 5811 . . . . 5  |-  ( (  _I  |`  dom  ( F  |`  X ) ) : dom  ( F  |`  X ) -1-1-onto-> dom  ( F  |`  X )  ->  (  _I  |`  dom  ( F  |`  X ) ) : dom  ( F  |`  X ) -1-1-> dom  ( F  |`  X ) )
64, 5ax-mp 5 . . . 4  |-  (  _I  |`  dom  ( F  |`  X ) ) : dom  ( F  |`  X ) -1-1-> dom  ( F  |`  X )
7 resss 5127 . . . . 5  |-  ( F  |`  X )  C_  F
8 dmss 5033 . . . . 5  |-  ( ( F  |`  X )  C_  F  ->  dom  ( F  |`  X )  C_  dom  F )
97, 8ax-mp 5 . . . 4  |-  dom  ( F  |`  X )  C_  dom  F
10 f1ss 5782 . . . 4  |-  ( ( (  _I  |`  dom  ( F  |`  X ) ) : dom  ( F  |`  X ) -1-1-> dom  ( F  |`  X )  /\  dom  ( F  |`  X ) 
C_  dom  F )  ->  (  _I  |`  dom  ( F  |`  X ) ) : dom  ( F  |`  X ) -1-1-> dom  F
)
116, 9, 10mp2an 677 . . 3  |-  (  _I  |`  dom  ( F  |`  X ) ) : dom  ( F  |`  X ) -1-1-> dom  F
12 f1lindf 19373 . . 3  |-  ( ( W  e.  LMod  /\  F LIndF  W  /\  (  _I  |`  dom  ( F  |`  X ) ) : dom  ( F  |`  X ) -1-1-> dom  F
)  ->  ( F  o.  (  _I  |`  dom  ( F  |`  X ) ) ) LIndF  W )
1311, 12mp3an3 1352 . 2  |-  ( ( W  e.  LMod  /\  F LIndF  W )  ->  ( F  o.  (  _I  |`  dom  ( F  |`  X ) ) ) LIndF  W )
143, 13syl5eqbrr 4436 1  |-  ( ( W  e.  LMod  /\  F LIndF  W )  ->  ( F  |`  X ) LIndF  W )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    e. wcel 1886    C_ wss 3403   class class class wbr 4401    _I cid 4743   dom cdm 4833    |` cres 4835    o. ccom 4837   -1-1->wf1 5578   -1-1-onto->wf1o 5580   LModclmod 18084   LIndF clindf 19355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-op 3974  df-uni 4198  df-int 4234  df-iun 4279  df-br 4402  df-opab 4461  df-mpt 4462  df-id 4748  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6250  df-ov 6291  df-slot 15118  df-base 15119  df-0g 15333  df-mgm 16481  df-sgrp 16520  df-mnd 16530  df-grp 16666  df-lmod 18086  df-lss 18149  df-lsp 18188  df-lindf 19357
This theorem is referenced by:  lindsss  19375
  Copyright terms: Public domain W3C validator