MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindfind2 Structured version   Unicode version

Theorem lindfind2 18979
Description: In a linearly independent family in a module over a nonzero ring, no element is contained in the span of any non-containing set. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
lindfind2.k  |-  K  =  ( LSpan `  W )
lindfind2.l  |-  L  =  (Scalar `  W )
Assertion
Ref Expression
lindfind2  |-  ( ( ( W  e.  LMod  /\  L  e. NzRing )  /\  F LIndF  W  /\  E  e.  dom  F )  ->  -.  ( F `  E )  e.  ( K `  ( F " ( dom  F  \  { E } ) ) ) )

Proof of Theorem lindfind2
StepHypRef Expression
1 simp1l 1020 . . 3  |-  ( ( ( W  e.  LMod  /\  L  e. NzRing )  /\  F LIndF  W  /\  E  e.  dom  F )  ->  W  e.  LMod )
2 simp2 997 . . . . 5  |-  ( ( ( W  e.  LMod  /\  L  e. NzRing )  /\  F LIndF  W  /\  E  e.  dom  F )  ->  F LIndF  W )
3 eqid 2457 . . . . . 6  |-  ( Base `  W )  =  (
Base `  W )
43lindff 18976 . . . . 5  |-  ( ( F LIndF  W  /\  W  e.  LMod )  ->  F : dom  F --> ( Base `  W ) )
52, 1, 4syl2anc 661 . . . 4  |-  ( ( ( W  e.  LMod  /\  L  e. NzRing )  /\  F LIndF  W  /\  E  e.  dom  F )  ->  F : dom  F --> ( Base `  W
) )
6 simp3 998 . . . 4  |-  ( ( ( W  e.  LMod  /\  L  e. NzRing )  /\  F LIndF  W  /\  E  e.  dom  F )  ->  E  e.  dom  F )
75, 6ffvelrnd 6033 . . 3  |-  ( ( ( W  e.  LMod  /\  L  e. NzRing )  /\  F LIndF  W  /\  E  e.  dom  F )  ->  ( F `  E )  e.  (
Base `  W )
)
8 lindfind2.l . . . 4  |-  L  =  (Scalar `  W )
9 eqid 2457 . . . 4  |-  ( .s
`  W )  =  ( .s `  W
)
10 eqid 2457 . . . 4  |-  ( 1r
`  L )  =  ( 1r `  L
)
113, 8, 9, 10lmodvs1 17666 . . 3  |-  ( ( W  e.  LMod  /\  ( F `  E )  e.  ( Base `  W
) )  ->  (
( 1r `  L
) ( .s `  W ) ( F `
 E ) )  =  ( F `  E ) )
121, 7, 11syl2anc 661 . 2  |-  ( ( ( W  e.  LMod  /\  L  e. NzRing )  /\  F LIndF  W  /\  E  e.  dom  F )  ->  ( ( 1r `  L ) ( .s `  W ) ( F `  E
) )  =  ( F `  E ) )
13 nzrring 18035 . . . . . 6  |-  ( L  e. NzRing  ->  L  e.  Ring )
14 eqid 2457 . . . . . . 7  |-  ( Base `  L )  =  (
Base `  L )
1514, 10ringidcl 17345 . . . . . 6  |-  ( L  e.  Ring  ->  ( 1r
`  L )  e.  ( Base `  L
) )
1613, 15syl 16 . . . . 5  |-  ( L  e. NzRing  ->  ( 1r `  L )  e.  (
Base `  L )
)
1716adantl 466 . . . 4  |-  ( ( W  e.  LMod  /\  L  e. NzRing )  ->  ( 1r `  L )  e.  (
Base `  L )
)
18173ad2ant1 1017 . . 3  |-  ( ( ( W  e.  LMod  /\  L  e. NzRing )  /\  F LIndF  W  /\  E  e.  dom  F )  ->  ( 1r `  L )  e.  (
Base `  L )
)
19 eqid 2457 . . . . . 6  |-  ( 0g
`  L )  =  ( 0g `  L
)
2010, 19nzrnz 18034 . . . . 5  |-  ( L  e. NzRing  ->  ( 1r `  L )  =/=  ( 0g `  L ) )
2120adantl 466 . . . 4  |-  ( ( W  e.  LMod  /\  L  e. NzRing )  ->  ( 1r `  L )  =/=  ( 0g `  L ) )
22213ad2ant1 1017 . . 3  |-  ( ( ( W  e.  LMod  /\  L  e. NzRing )  /\  F LIndF  W  /\  E  e.  dom  F )  ->  ( 1r `  L )  =/=  ( 0g `  L ) )
23 lindfind2.k . . . 4  |-  K  =  ( LSpan `  W )
249, 23, 8, 19, 14lindfind 18977 . . 3  |-  ( ( ( F LIndF  W  /\  E  e.  dom  F )  /\  ( ( 1r
`  L )  e.  ( Base `  L
)  /\  ( 1r `  L )  =/=  ( 0g `  L ) ) )  ->  -.  (
( 1r `  L
) ( .s `  W ) ( F `
 E ) )  e.  ( K `  ( F " ( dom 
F  \  { E } ) ) ) )
252, 6, 18, 22, 24syl22anc 1229 . 2  |-  ( ( ( W  e.  LMod  /\  L  e. NzRing )  /\  F LIndF  W  /\  E  e.  dom  F )  ->  -.  (
( 1r `  L
) ( .s `  W ) ( F `
 E ) )  e.  ( K `  ( F " ( dom 
F  \  { E } ) ) ) )
2612, 25eqneltrrd 2567 1  |-  ( ( ( W  e.  LMod  /\  L  e. NzRing )  /\  F LIndF  W  /\  E  e.  dom  F )  ->  -.  ( F `  E )  e.  ( K `  ( F " ( dom  F  \  { E } ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    =/= wne 2652    \ cdif 3468   {csn 4032   class class class wbr 4456   dom cdm 5008   "cima 5011   -->wf 5590   ` cfv 5594  (class class class)co 6296   Basecbs 14643  Scalarcsca 14714   .scvsca 14715   0gc0g 14856   1rcur 17279   Ringcrg 17324   LModclmod 17638   LSpanclspn 17743  NzRingcnzr 18031   LIndF clindf 18965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-recs 7060  df-rdg 7094  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-ndx 14646  df-slot 14647  df-base 14648  df-sets 14649  df-plusg 14724  df-0g 14858  df-mgm 15998  df-sgrp 16037  df-mnd 16047  df-mgp 17268  df-ur 17280  df-ring 17326  df-lmod 17640  df-nzr 18032  df-lindf 18967
This theorem is referenced by:  lindsind2  18980  lindff1  18981
  Copyright terms: Public domain W3C validator