Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincsum Structured version   Visualization version   Unicode version

Theorem lincsum 40275
Description: The sum of two linear combinations is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 4-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lincsum.p  |-  .+  =  ( +g  `  M )
lincsum.x  |-  X  =  ( A ( linC  `  M ) V )
lincsum.y  |-  Y  =  ( B ( linC  `  M ) V )
lincsum.s  |-  S  =  (Scalar `  M )
lincsum.r  |-  R  =  ( Base `  S
)
lincsum.b  |-  .+b  =  ( +g  `  S )
Assertion
Ref Expression
lincsum  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) )  /\  ( A finSupp 
( 0g `  S
)  /\  B finSupp  ( 0g
`  S ) ) )  ->  ( X  .+  Y )  =  ( ( A  oF 
.+b  B ) ( linC  `  M ) V ) )

Proof of Theorem lincsum
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2451 . . 3  |-  ( Base `  M )  =  (
Base `  M )
2 eqid 2451 . . 3  |-  ( 0g
`  M )  =  ( 0g `  M
)
3 lincsum.p . . 3  |-  .+  =  ( +g  `  M )
4 lmodcmn 18136 . . . . 5  |-  ( M  e.  LMod  ->  M  e. CMnd
)
54adantr 467 . . . 4  |-  ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M
) )  ->  M  e. CMnd )
653ad2ant1 1029 . . 3  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) )  /\  ( A finSupp 
( 0g `  S
)  /\  B finSupp  ( 0g
`  S ) ) )  ->  M  e. CMnd )
7 simpr 463 . . . 4  |-  ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M
) )  ->  V  e.  ~P ( Base `  M
) )
873ad2ant1 1029 . . 3  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) )  /\  ( A finSupp 
( 0g `  S
)  /\  B finSupp  ( 0g
`  S ) ) )  ->  V  e.  ~P ( Base `  M
) )
9 simpl 459 . . . . . 6  |-  ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M
) )  ->  M  e.  LMod )
1093ad2ant1 1029 . . . . 5  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) )  /\  ( A finSupp 
( 0g `  S
)  /\  B finSupp  ( 0g
`  S ) ) )  ->  M  e.  LMod )
1110adantr 467 . . . 4  |-  ( ( ( ( M  e. 
LMod  /\  V  e.  ~P ( Base `  M )
)  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) )  /\  ( A finSupp 
( 0g `  S
)  /\  B finSupp  ( 0g
`  S ) ) )  /\  x  e.  V )  ->  M  e.  LMod )
12 elmapi 7493 . . . . . . . 8  |-  ( A  e.  ( R  ^m  V )  ->  A : V --> R )
13 ffvelrn 6020 . . . . . . . . 9  |-  ( ( A : V --> R  /\  x  e.  V )  ->  ( A `  x
)  e.  R )
1413ex 436 . . . . . . . 8  |-  ( A : V --> R  -> 
( x  e.  V  ->  ( A `  x
)  e.  R ) )
1512, 14syl 17 . . . . . . 7  |-  ( A  e.  ( R  ^m  V )  ->  (
x  e.  V  -> 
( A `  x
)  e.  R ) )
1615adantr 467 . . . . . 6  |-  ( ( A  e.  ( R  ^m  V )  /\  B  e.  ( R  ^m  V ) )  -> 
( x  e.  V  ->  ( A `  x
)  e.  R ) )
17163ad2ant2 1030 . . . . 5  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) )  /\  ( A finSupp 
( 0g `  S
)  /\  B finSupp  ( 0g
`  S ) ) )  ->  ( x  e.  V  ->  ( A `
 x )  e.  R ) )
1817imp 431 . . . 4  |-  ( ( ( ( M  e. 
LMod  /\  V  e.  ~P ( Base `  M )
)  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) )  /\  ( A finSupp 
( 0g `  S
)  /\  B finSupp  ( 0g
`  S ) ) )  /\  x  e.  V )  ->  ( A `  x )  e.  R )
19 elelpwi 3962 . . . . . . . 8  |-  ( ( x  e.  V  /\  V  e.  ~P ( Base `  M ) )  ->  x  e.  (
Base `  M )
)
2019expcom 437 . . . . . . 7  |-  ( V  e.  ~P ( Base `  M )  ->  (
x  e.  V  ->  x  e.  ( Base `  M ) ) )
2120adantl 468 . . . . . 6  |-  ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M
) )  ->  (
x  e.  V  ->  x  e.  ( Base `  M ) ) )
22213ad2ant1 1029 . . . . 5  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) )  /\  ( A finSupp 
( 0g `  S
)  /\  B finSupp  ( 0g
`  S ) ) )  ->  ( x  e.  V  ->  x  e.  ( Base `  M
) ) )
2322imp 431 . . . 4  |-  ( ( ( ( M  e. 
LMod  /\  V  e.  ~P ( Base `  M )
)  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) )  /\  ( A finSupp 
( 0g `  S
)  /\  B finSupp  ( 0g
`  S ) ) )  /\  x  e.  V )  ->  x  e.  ( Base `  M
) )
24 lincsum.s . . . . 5  |-  S  =  (Scalar `  M )
25 eqid 2451 . . . . 5  |-  ( .s
`  M )  =  ( .s `  M
)
26 lincsum.r . . . . 5  |-  R  =  ( Base `  S
)
271, 24, 25, 26lmodvscl 18108 . . . 4  |-  ( ( M  e.  LMod  /\  ( A `  x )  e.  R  /\  x  e.  ( Base `  M
) )  ->  (
( A `  x
) ( .s `  M ) x )  e.  ( Base `  M
) )
2811, 18, 23, 27syl3anc 1268 . . 3  |-  ( ( ( ( M  e. 
LMod  /\  V  e.  ~P ( Base `  M )
)  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) )  /\  ( A finSupp 
( 0g `  S
)  /\  B finSupp  ( 0g
`  S ) ) )  /\  x  e.  V )  ->  (
( A `  x
) ( .s `  M ) x )  e.  ( Base `  M
) )
29 elmapi 7493 . . . . . . . 8  |-  ( B  e.  ( R  ^m  V )  ->  B : V --> R )
30 ffvelrn 6020 . . . . . . . . 9  |-  ( ( B : V --> R  /\  x  e.  V )  ->  ( B `  x
)  e.  R )
3130ex 436 . . . . . . . 8  |-  ( B : V --> R  -> 
( x  e.  V  ->  ( B `  x
)  e.  R ) )
3229, 31syl 17 . . . . . . 7  |-  ( B  e.  ( R  ^m  V )  ->  (
x  e.  V  -> 
( B `  x
)  e.  R ) )
3332adantl 468 . . . . . 6  |-  ( ( A  e.  ( R  ^m  V )  /\  B  e.  ( R  ^m  V ) )  -> 
( x  e.  V  ->  ( B `  x
)  e.  R ) )
34333ad2ant2 1030 . . . . 5  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) )  /\  ( A finSupp 
( 0g `  S
)  /\  B finSupp  ( 0g
`  S ) ) )  ->  ( x  e.  V  ->  ( B `
 x )  e.  R ) )
3534imp 431 . . . 4  |-  ( ( ( ( M  e. 
LMod  /\  V  e.  ~P ( Base `  M )
)  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) )  /\  ( A finSupp 
( 0g `  S
)  /\  B finSupp  ( 0g
`  S ) ) )  /\  x  e.  V )  ->  ( B `  x )  e.  R )
361, 24, 25, 26lmodvscl 18108 . . . 4  |-  ( ( M  e.  LMod  /\  ( B `  x )  e.  R  /\  x  e.  ( Base `  M
) )  ->  (
( B `  x
) ( .s `  M ) x )  e.  ( Base `  M
) )
3711, 35, 23, 36syl3anc 1268 . . 3  |-  ( ( ( ( M  e. 
LMod  /\  V  e.  ~P ( Base `  M )
)  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) )  /\  ( A finSupp 
( 0g `  S
)  /\  B finSupp  ( 0g
`  S ) ) )  /\  x  e.  V )  ->  (
( B `  x
) ( .s `  M ) x )  e.  ( Base `  M
) )
38 eqidd 2452 . . 3  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) )  /\  ( A finSupp 
( 0g `  S
)  /\  B finSupp  ( 0g
`  S ) ) )  ->  ( x  e.  V  |->  ( ( A `  x ) ( .s `  M
) x ) )  =  ( x  e.  V  |->  ( ( A `
 x ) ( .s `  M ) x ) ) )
39 eqidd 2452 . . 3  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) )  /\  ( A finSupp 
( 0g `  S
)  /\  B finSupp  ( 0g
`  S ) ) )  ->  ( x  e.  V  |->  ( ( B `  x ) ( .s `  M
) x ) )  =  ( x  e.  V  |->  ( ( B `
 x ) ( .s `  M ) x ) ) )
40 id 22 . . . 4  |-  ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M
) )  ->  ( M  e.  LMod  /\  V  e.  ~P ( Base `  M
) ) )
41 simpl 459 . . . 4  |-  ( ( A  e.  ( R  ^m  V )  /\  B  e.  ( R  ^m  V ) )  ->  A  e.  ( R  ^m  V ) )
42 simpl 459 . . . 4  |-  ( ( A finSupp  ( 0g `  S )  /\  B finSupp  ( 0g `  S ) )  ->  A finSupp  ( 0g
`  S ) )
4324, 26scmfsupp 40216 . . . 4  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  A  e.  ( R  ^m  V )  /\  A finSupp  ( 0g `  S ) )  -> 
( x  e.  V  |->  ( ( A `  x ) ( .s
`  M ) x ) ) finSupp  ( 0g
`  M ) )
4440, 41, 42, 43syl3an 1310 . . 3  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) )  /\  ( A finSupp 
( 0g `  S
)  /\  B finSupp  ( 0g
`  S ) ) )  ->  ( x  e.  V  |->  ( ( A `  x ) ( .s `  M
) x ) ) finSupp 
( 0g `  M
) )
45 simpr 463 . . . 4  |-  ( ( A  e.  ( R  ^m  V )  /\  B  e.  ( R  ^m  V ) )  ->  B  e.  ( R  ^m  V ) )
46 simpr 463 . . . 4  |-  ( ( A finSupp  ( 0g `  S )  /\  B finSupp  ( 0g `  S ) )  ->  B finSupp  ( 0g
`  S ) )
4724, 26scmfsupp 40216 . . . 4  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  B  e.  ( R  ^m  V )  /\  B finSupp  ( 0g `  S ) )  -> 
( x  e.  V  |->  ( ( B `  x ) ( .s
`  M ) x ) ) finSupp  ( 0g
`  M ) )
4840, 45, 46, 47syl3an 1310 . . 3  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) )  /\  ( A finSupp 
( 0g `  S
)  /\  B finSupp  ( 0g
`  S ) ) )  ->  ( x  e.  V  |->  ( ( B `  x ) ( .s `  M
) x ) ) finSupp 
( 0g `  M
) )
491, 2, 3, 6, 8, 28, 37, 38, 39, 44, 48gsummptfsadd 17557 . 2  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) )  /\  ( A finSupp 
( 0g `  S
)  /\  B finSupp  ( 0g
`  S ) ) )  ->  ( M  gsumg  ( x  e.  V  |->  ( ( ( A `  x ) ( .s
`  M ) x )  .+  ( ( B `  x ) ( .s `  M
) x ) ) ) )  =  ( ( M  gsumg  ( x  e.  V  |->  ( ( A `  x ) ( .s
`  M ) x ) ) )  .+  ( M  gsumg  ( x  e.  V  |->  ( ( B `  x ) ( .s
`  M ) x ) ) ) ) )
507adantr 467 . . . . . . 7  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  ->  V  e.  ~P ( Base `  M
) )
51 elmapfn 7494 . . . . . . . 8  |-  ( A  e.  ( R  ^m  V )  ->  A  Fn  V )
5251ad2antrl 734 . . . . . . 7  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  ->  A  Fn  V )
53 elmapfn 7494 . . . . . . . 8  |-  ( B  e.  ( R  ^m  V )  ->  B  Fn  V )
5453ad2antll 735 . . . . . . 7  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  ->  B  Fn  V )
5550, 52, 54offvalfv 40177 . . . . . 6  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  ->  ( A  oF  .+b  B
)  =  ( y  e.  V  |->  ( ( A `  y ) 
.+b  ( B `  y ) ) ) )
56553adant3 1028 . . . . 5  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) )  /\  ( A finSupp 
( 0g `  S
)  /\  B finSupp  ( 0g
`  S ) ) )  ->  ( A  oF  .+b  B )  =  ( y  e.  V  |->  ( ( A `
 y )  .+b  ( B `  y ) ) ) )
5724lmodfgrp 18100 . . . . . . . . . . 11  |-  ( M  e.  LMod  ->  S  e. 
Grp )
58 grpmnd 16678 . . . . . . . . . . 11  |-  ( S  e.  Grp  ->  S  e.  Mnd )
5957, 58syl 17 . . . . . . . . . 10  |-  ( M  e.  LMod  ->  S  e. 
Mnd )
6059ad3antrrr 736 . . . . . . . . 9  |-  ( ( ( ( M  e. 
LMod  /\  V  e.  ~P ( Base `  M )
)  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  /\  y  e.  V )  ->  S  e.  Mnd )
61 ffvelrn 6020 . . . . . . . . . . . . . 14  |-  ( ( A : V --> R  /\  y  e.  V )  ->  ( A `  y
)  e.  R )
6261ex 436 . . . . . . . . . . . . 13  |-  ( A : V --> R  -> 
( y  e.  V  ->  ( A `  y
)  e.  R ) )
6312, 62syl 17 . . . . . . . . . . . 12  |-  ( A  e.  ( R  ^m  V )  ->  (
y  e.  V  -> 
( A `  y
)  e.  R ) )
6463ad2antrl 734 . . . . . . . . . . 11  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  ->  (
y  e.  V  -> 
( A `  y
)  e.  R ) )
6564imp 431 . . . . . . . . . 10  |-  ( ( ( ( M  e. 
LMod  /\  V  e.  ~P ( Base `  M )
)  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  /\  y  e.  V )  ->  ( A `  y )  e.  R )
6624fveq2i 5868 . . . . . . . . . . 11  |-  ( Base `  S )  =  (
Base `  (Scalar `  M
) )
6726, 66eqtri 2473 . . . . . . . . . 10  |-  R  =  ( Base `  (Scalar `  M ) )
6865, 67syl6eleq 2539 . . . . . . . . 9  |-  ( ( ( ( M  e. 
LMod  /\  V  e.  ~P ( Base `  M )
)  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  /\  y  e.  V )  ->  ( A `  y )  e.  ( Base `  (Scalar `  M ) ) )
69 ffvelrn 6020 . . . . . . . . . . . . . 14  |-  ( ( B : V --> R  /\  y  e.  V )  ->  ( B `  y
)  e.  R )
7069, 67syl6eleq 2539 . . . . . . . . . . . . 13  |-  ( ( B : V --> R  /\  y  e.  V )  ->  ( B `  y
)  e.  ( Base `  (Scalar `  M )
) )
7170ex 436 . . . . . . . . . . . 12  |-  ( B : V --> R  -> 
( y  e.  V  ->  ( B `  y
)  e.  ( Base `  (Scalar `  M )
) ) )
7229, 71syl 17 . . . . . . . . . . 11  |-  ( B  e.  ( R  ^m  V )  ->  (
y  e.  V  -> 
( B `  y
)  e.  ( Base `  (Scalar `  M )
) ) )
7372ad2antll 735 . . . . . . . . . 10  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  ->  (
y  e.  V  -> 
( B `  y
)  e.  ( Base `  (Scalar `  M )
) ) )
7473imp 431 . . . . . . . . 9  |-  ( ( ( ( M  e. 
LMod  /\  V  e.  ~P ( Base `  M )
)  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  /\  y  e.  V )  ->  ( B `  y )  e.  ( Base `  (Scalar `  M ) ) )
7524eqcomi 2460 . . . . . . . . . . 11  |-  (Scalar `  M )  =  S
7675fveq2i 5868 . . . . . . . . . 10  |-  ( Base `  (Scalar `  M )
)  =  ( Base `  S )
77 lincsum.b . . . . . . . . . 10  |-  .+b  =  ( +g  `  S )
7876, 77mndcl 16545 . . . . . . . . 9  |-  ( ( S  e.  Mnd  /\  ( A `  y )  e.  ( Base `  (Scalar `  M ) )  /\  ( B `  y )  e.  ( Base `  (Scalar `  M ) ) )  ->  ( ( A `
 y )  .+b  ( B `  y ) )  e.  ( Base `  (Scalar `  M )
) )
7960, 68, 74, 78syl3anc 1268 . . . . . . . 8  |-  ( ( ( ( M  e. 
LMod  /\  V  e.  ~P ( Base `  M )
)  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  /\  y  e.  V )  ->  (
( A `  y
)  .+b  ( B `  y ) )  e.  ( Base `  (Scalar `  M ) ) )
80 eqid 2451 . . . . . . . 8  |-  ( y  e.  V  |->  ( ( A `  y ) 
.+b  ( B `  y ) ) )  =  ( y  e.  V  |->  ( ( A `
 y )  .+b  ( B `  y ) ) )
8179, 80fmptd 6046 . . . . . . 7  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  ->  (
y  e.  V  |->  ( ( A `  y
)  .+b  ( B `  y ) ) ) : V --> ( Base `  (Scalar `  M )
) )
82 fvex 5875 . . . . . . . 8  |-  ( Base `  (Scalar `  M )
)  e.  _V
83 elmapg 7485 . . . . . . . 8  |-  ( ( ( Base `  (Scalar `  M ) )  e. 
_V  /\  V  e.  ~P ( Base `  M
) )  ->  (
( y  e.  V  |->  ( ( A `  y )  .+b  ( B `  y )
) )  e.  ( ( Base `  (Scalar `  M ) )  ^m  V )  <->  ( y  e.  V  |->  ( ( A `  y ) 
.+b  ( B `  y ) ) ) : V --> ( Base `  (Scalar `  M )
) ) )
8482, 50, 83sylancr 669 . . . . . . 7  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  ->  (
( y  e.  V  |->  ( ( A `  y )  .+b  ( B `  y )
) )  e.  ( ( Base `  (Scalar `  M ) )  ^m  V )  <->  ( y  e.  V  |->  ( ( A `  y ) 
.+b  ( B `  y ) ) ) : V --> ( Base `  (Scalar `  M )
) ) )
8581, 84mpbird 236 . . . . . 6  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  ->  (
y  e.  V  |->  ( ( A `  y
)  .+b  ( B `  y ) ) )  e.  ( ( Base `  (Scalar `  M )
)  ^m  V )
)
86853adant3 1028 . . . . 5  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) )  /\  ( A finSupp 
( 0g `  S
)  /\  B finSupp  ( 0g
`  S ) ) )  ->  ( y  e.  V  |->  ( ( A `  y ) 
.+b  ( B `  y ) ) )  e.  ( ( Base `  (Scalar `  M )
)  ^m  V )
)
8756, 86eqeltrd 2529 . . . 4  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) )  /\  ( A finSupp 
( 0g `  S
)  /\  B finSupp  ( 0g
`  S ) ) )  ->  ( A  oF  .+b  B )  e.  ( ( Base `  (Scalar `  M )
)  ^m  V )
)
88 lincval 40255 . . . 4  |-  ( ( M  e.  LMod  /\  ( A  oF  .+b  B
)  e.  ( (
Base `  (Scalar `  M
) )  ^m  V
)  /\  V  e.  ~P ( Base `  M
) )  ->  (
( A  oF 
.+b  B ) ( linC  `  M ) V )  =  ( M  gsumg  ( x  e.  V  |->  ( ( ( A  oF 
.+b  B ) `  x ) ( .s
`  M ) x ) ) ) )
8910, 87, 8, 88syl3anc 1268 . . 3  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) )  /\  ( A finSupp 
( 0g `  S
)  /\  B finSupp  ( 0g
`  S ) ) )  ->  ( ( A  oF  .+b  B
) ( linC  `  M
) V )  =  ( M  gsumg  ( x  e.  V  |->  ( ( ( A  oF  .+b  B
) `  x )
( .s `  M
) x ) ) ) )
9051, 53anim12i 570 . . . . . . . . . . . 12  |-  ( ( A  e.  ( R  ^m  V )  /\  B  e.  ( R  ^m  V ) )  -> 
( A  Fn  V  /\  B  Fn  V
) )
9190adantl 468 . . . . . . . . . . 11  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  ->  ( A  Fn  V  /\  B  Fn  V )
)
9291adantr 467 . . . . . . . . . 10  |-  ( ( ( ( M  e. 
LMod  /\  V  e.  ~P ( Base `  M )
)  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  /\  x  e.  V )  ->  ( A  Fn  V  /\  B  Fn  V )
)
9350anim1i 572 . . . . . . . . . 10  |-  ( ( ( ( M  e. 
LMod  /\  V  e.  ~P ( Base `  M )
)  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  /\  x  e.  V )  ->  ( V  e.  ~P ( Base `  M )  /\  x  e.  V )
)
94 fnfvof 6545 . . . . . . . . . 10  |-  ( ( ( A  Fn  V  /\  B  Fn  V
)  /\  ( V  e.  ~P ( Base `  M
)  /\  x  e.  V ) )  -> 
( ( A  oF  .+b  B ) `  x )  =  ( ( A `  x
)  .+b  ( B `  x ) ) )
9592, 93, 94syl2anc 667 . . . . . . . . 9  |-  ( ( ( ( M  e. 
LMod  /\  V  e.  ~P ( Base `  M )
)  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  /\  x  e.  V )  ->  (
( A  oF 
.+b  B ) `  x )  =  ( ( A `  x
)  .+b  ( B `  x ) ) )
9677a1i 11 . . . . . . . . . 10  |-  ( ( ( ( M  e. 
LMod  /\  V  e.  ~P ( Base `  M )
)  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  /\  x  e.  V )  ->  .+b  =  ( +g  `  S ) )
9796oveqd 6307 . . . . . . . . 9  |-  ( ( ( ( M  e. 
LMod  /\  V  e.  ~P ( Base `  M )
)  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  /\  x  e.  V )  ->  (
( A `  x
)  .+b  ( B `  x ) )  =  ( ( A `  x ) ( +g  `  S ) ( B `
 x ) ) )
9895, 97eqtrd 2485 . . . . . . . 8  |-  ( ( ( ( M  e. 
LMod  /\  V  e.  ~P ( Base `  M )
)  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  /\  x  e.  V )  ->  (
( A  oF 
.+b  B ) `  x )  =  ( ( A `  x
) ( +g  `  S
) ( B `  x ) ) )
9998oveq1d 6305 . . . . . . 7  |-  ( ( ( ( M  e. 
LMod  /\  V  e.  ~P ( Base `  M )
)  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  /\  x  e.  V )  ->  (
( ( A  oF  .+b  B ) `  x ) ( .s
`  M ) x )  =  ( ( ( A `  x
) ( +g  `  S
) ( B `  x ) ) ( .s `  M ) x ) )
1009adantr 467 . . . . . . . . 9  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  ->  M  e.  LMod )
101100adantr 467 . . . . . . . 8  |-  ( ( ( ( M  e. 
LMod  /\  V  e.  ~P ( Base `  M )
)  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  /\  x  e.  V )  ->  M  e.  LMod )
10215ad2antrl 734 . . . . . . . . 9  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  ->  (
x  e.  V  -> 
( A `  x
)  e.  R ) )
103102imp 431 . . . . . . . 8  |-  ( ( ( ( M  e. 
LMod  /\  V  e.  ~P ( Base `  M )
)  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  /\  x  e.  V )  ->  ( A `  x )  e.  R )
10432ad2antll 735 . . . . . . . . 9  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  ->  (
x  e.  V  -> 
( B `  x
)  e.  R ) )
105104imp 431 . . . . . . . 8  |-  ( ( ( ( M  e. 
LMod  /\  V  e.  ~P ( Base `  M )
)  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  /\  x  e.  V )  ->  ( B `  x )  e.  R )
10621adantr 467 . . . . . . . . 9  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  ->  (
x  e.  V  ->  x  e.  ( Base `  M ) ) )
107106imp 431 . . . . . . . 8  |-  ( ( ( ( M  e. 
LMod  /\  V  e.  ~P ( Base `  M )
)  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  /\  x  e.  V )  ->  x  e.  ( Base `  M
) )
108 eqid 2451 . . . . . . . . 9  |-  (Scalar `  M )  =  (Scalar `  M )
10924fveq2i 5868 . . . . . . . . 9  |-  ( +g  `  S )  =  ( +g  `  (Scalar `  M ) )
1101, 3, 108, 25, 67, 109lmodvsdir 18115 . . . . . . . 8  |-  ( ( M  e.  LMod  /\  (
( A `  x
)  e.  R  /\  ( B `  x )  e.  R  /\  x  e.  ( Base `  M
) ) )  -> 
( ( ( A `
 x ) ( +g  `  S ) ( B `  x
) ) ( .s
`  M ) x )  =  ( ( ( A `  x
) ( .s `  M ) x ) 
.+  ( ( B `
 x ) ( .s `  M ) x ) ) )
111101, 103, 105, 107, 110syl13anc 1270 . . . . . . 7  |-  ( ( ( ( M  e. 
LMod  /\  V  e.  ~P ( Base `  M )
)  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  /\  x  e.  V )  ->  (
( ( A `  x ) ( +g  `  S ) ( B `
 x ) ) ( .s `  M
) x )  =  ( ( ( A `
 x ) ( .s `  M ) x )  .+  (
( B `  x
) ( .s `  M ) x ) ) )
11299, 111eqtrd 2485 . . . . . 6  |-  ( ( ( ( M  e. 
LMod  /\  V  e.  ~P ( Base `  M )
)  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  /\  x  e.  V )  ->  (
( ( A  oF  .+b  B ) `  x ) ( .s
`  M ) x )  =  ( ( ( A `  x
) ( .s `  M ) x ) 
.+  ( ( B `
 x ) ( .s `  M ) x ) ) )
113112mpteq2dva 4489 . . . . 5  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  ->  (
x  e.  V  |->  ( ( ( A  oF  .+b  B ) `  x ) ( .s
`  M ) x ) )  =  ( x  e.  V  |->  ( ( ( A `  x ) ( .s
`  M ) x )  .+  ( ( B `  x ) ( .s `  M
) x ) ) ) )
114113oveq2d 6306 . . . 4  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  ->  ( M  gsumg  ( x  e.  V  |->  ( ( ( A  oF  .+b  B
) `  x )
( .s `  M
) x ) ) )  =  ( M 
gsumg  ( x  e.  V  |->  ( ( ( A `
 x ) ( .s `  M ) x )  .+  (
( B `  x
) ( .s `  M ) x ) ) ) ) )
1151143adant3 1028 . . 3  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) )  /\  ( A finSupp 
( 0g `  S
)  /\  B finSupp  ( 0g
`  S ) ) )  ->  ( M  gsumg  ( x  e.  V  |->  ( ( ( A  oF  .+b  B ) `  x ) ( .s
`  M ) x ) ) )  =  ( M  gsumg  ( x  e.  V  |->  ( ( ( A `
 x ) ( .s `  M ) x )  .+  (
( B `  x
) ( .s `  M ) x ) ) ) ) )
11689, 115eqtrd 2485 . 2  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) )  /\  ( A finSupp 
( 0g `  S
)  /\  B finSupp  ( 0g
`  S ) ) )  ->  ( ( A  oF  .+b  B
) ( linC  `  M
) V )  =  ( M  gsumg  ( x  e.  V  |->  ( ( ( A `
 x ) ( .s `  M ) x )  .+  (
( B `  x
) ( .s `  M ) x ) ) ) ) )
117 lincsum.x . . . 4  |-  X  =  ( A ( linC  `  M ) V )
118 lincsum.y . . . 4  |-  Y  =  ( B ( linC  `  M ) V )
119117, 118oveq12i 6302 . . 3  |-  ( X 
.+  Y )  =  ( ( A ( linC  `  M ) V ) 
.+  ( B ( linC  `  M ) V ) )
12067oveq1i 6300 . . . . . . . . 9  |-  ( R  ^m  V )  =  ( ( Base `  (Scalar `  M ) )  ^m  V )
121120eleq2i 2521 . . . . . . . 8  |-  ( A  e.  ( R  ^m  V )  <->  A  e.  ( ( Base `  (Scalar `  M ) )  ^m  V ) )
122121biimpi 198 . . . . . . 7  |-  ( A  e.  ( R  ^m  V )  ->  A  e.  ( ( Base `  (Scalar `  M ) )  ^m  V ) )
123122ad2antrl 734 . . . . . 6  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  ->  A  e.  ( ( Base `  (Scalar `  M ) )  ^m  V ) )
124 lincval 40255 . . . . . 6  |-  ( ( M  e.  LMod  /\  A  e.  ( ( Base `  (Scalar `  M ) )  ^m  V )  /\  V  e.  ~P ( Base `  M
) )  ->  ( A ( linC  `  M ) V )  =  ( M  gsumg  ( x  e.  V  |->  ( ( A `  x ) ( .s
`  M ) x ) ) ) )
125100, 123, 50, 124syl3anc 1268 . . . . 5  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  ->  ( A ( linC  `  M ) V )  =  ( M  gsumg  ( x  e.  V  |->  ( ( A `  x ) ( .s
`  M ) x ) ) ) )
126120eleq2i 2521 . . . . . . . 8  |-  ( B  e.  ( R  ^m  V )  <->  B  e.  ( ( Base `  (Scalar `  M ) )  ^m  V ) )
127126biimpi 198 . . . . . . 7  |-  ( B  e.  ( R  ^m  V )  ->  B  e.  ( ( Base `  (Scalar `  M ) )  ^m  V ) )
128127ad2antll 735 . . . . . 6  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  ->  B  e.  ( ( Base `  (Scalar `  M ) )  ^m  V ) )
129 lincval 40255 . . . . . 6  |-  ( ( M  e.  LMod  /\  B  e.  ( ( Base `  (Scalar `  M ) )  ^m  V )  /\  V  e.  ~P ( Base `  M
) )  ->  ( B ( linC  `  M ) V )  =  ( M  gsumg  ( x  e.  V  |->  ( ( B `  x ) ( .s
`  M ) x ) ) ) )
130100, 128, 50, 129syl3anc 1268 . . . . 5  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  ->  ( B ( linC  `  M ) V )  =  ( M  gsumg  ( x  e.  V  |->  ( ( B `  x ) ( .s
`  M ) x ) ) ) )
131125, 130oveq12d 6308 . . . 4  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) ) )  ->  (
( A ( linC  `  M ) V ) 
.+  ( B ( linC  `  M ) V ) )  =  ( ( M  gsumg  ( x  e.  V  |->  ( ( A `  x ) ( .s
`  M ) x ) ) )  .+  ( M  gsumg  ( x  e.  V  |->  ( ( B `  x ) ( .s
`  M ) x ) ) ) ) )
1321313adant3 1028 . . 3  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) )  /\  ( A finSupp 
( 0g `  S
)  /\  B finSupp  ( 0g
`  S ) ) )  ->  ( ( A ( linC  `  M ) V )  .+  ( B ( linC  `  M ) V ) )  =  ( ( M  gsumg  ( x  e.  V  |->  ( ( A `  x ) ( .s `  M
) x ) ) )  .+  ( M 
gsumg  ( x  e.  V  |->  ( ( B `  x ) ( .s
`  M ) x ) ) ) ) )
133119, 132syl5eq 2497 . 2  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) )  /\  ( A finSupp 
( 0g `  S
)  /\  B finSupp  ( 0g
`  S ) ) )  ->  ( X  .+  Y )  =  ( ( M  gsumg  ( x  e.  V  |->  ( ( A `  x ) ( .s
`  M ) x ) ) )  .+  ( M  gsumg  ( x  e.  V  |->  ( ( B `  x ) ( .s
`  M ) x ) ) ) ) )
13449, 116, 1333eqtr4rd 2496 1  |-  ( ( ( M  e.  LMod  /\  V  e.  ~P ( Base `  M ) )  /\  ( A  e.  ( R  ^m  V
)  /\  B  e.  ( R  ^m  V ) )  /\  ( A finSupp 
( 0g `  S
)  /\  B finSupp  ( 0g
`  S ) ) )  ->  ( X  .+  Y )  =  ( ( A  oF 
.+b  B ) ( linC  `  M ) V ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887   _Vcvv 3045   ~Pcpw 3951   class class class wbr 4402    |-> cmpt 4461    Fn wfn 5577   -->wf 5578   ` cfv 5582  (class class class)co 6290    oFcof 6529    ^m cmap 7472   finSupp cfsupp 7883   Basecbs 15121   +g cplusg 15190  Scalarcsca 15193   .scvsca 15194   0gc0g 15338    gsumg cgsu 15339   Mndcmnd 16535   Grpcgrp 16669  CMndccmn 17430   LModclmod 18091   linC clinc 40250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-se 4794  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-of 6531  df-om 6693  df-1st 6793  df-2nd 6794  df-supp 6915  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-oadd 7186  df-er 7363  df-map 7474  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-fsupp 7884  df-oi 8025  df-card 8373  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-nn 10610  df-2 10668  df-n0 10870  df-z 10938  df-uz 11160  df-fz 11785  df-fzo 11916  df-seq 12214  df-hash 12516  df-ndx 15124  df-slot 15125  df-base 15126  df-sets 15127  df-ress 15128  df-plusg 15203  df-0g 15340  df-gsum 15341  df-mgm 16488  df-sgrp 16527  df-mnd 16537  df-submnd 16583  df-grp 16673  df-minusg 16674  df-cntz 16971  df-cmn 17432  df-abl 17433  df-mgp 17724  df-ur 17736  df-ring 17782  df-lmod 18093  df-linc 40252
This theorem is referenced by:  lincsumcl  40277
  Copyright terms: Public domain W3C validator