MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lincmb01cmp Structured version   Unicode version

Theorem lincmb01cmp 11776
Description: A linear combination of two reals which lies in the interval between them. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 8-Sep-2015.)
Assertion
Ref Expression
lincmb01cmp  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  T )  x.  A )  +  ( T  x.  B
) )  e.  ( A [,] B ) )

Proof of Theorem lincmb01cmp
StepHypRef Expression
1 simpr 462 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  T  e.  ( 0 [,] 1 ) )
2 0re 9644 . . . . . . 7  |-  0  e.  RR
32a1i 11 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  0  e.  RR )
4 1re 9643 . . . . . . 7  |-  1  e.  RR
54a1i 11 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  1  e.  RR )
62, 4elicc2i 11701 . . . . . . . 8  |-  ( T  e.  ( 0 [,] 1 )  <->  ( T  e.  RR  /\  0  <_  T  /\  T  <_  1
) )
76simp1bi 1020 . . . . . . 7  |-  ( T  e.  ( 0 [,] 1 )  ->  T  e.  RR )
87adantl 467 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  T  e.  RR )
9 difrp 11338 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( B  -  A )  e.  RR+ ) )
109biimp3a 1364 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( B  -  A )  e.  RR+ )
1110adantr 466 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( B  -  A )  e.  RR+ )
12 eqid 2422 . . . . . . 7  |-  ( 0  x.  ( B  -  A ) )  =  ( 0  x.  ( B  -  A )
)
13 eqid 2422 . . . . . . 7  |-  ( 1  x.  ( B  -  A ) )  =  ( 1  x.  ( B  -  A )
)
1412, 13iccdil 11771 . . . . . 6  |-  ( ( ( 0  e.  RR  /\  1  e.  RR )  /\  ( T  e.  RR  /\  ( B  -  A )  e.  RR+ ) )  ->  ( T  e.  ( 0 [,] 1 )  <->  ( T  x.  ( B  -  A
) )  e.  ( ( 0  x.  ( B  -  A )
) [,] ( 1  x.  ( B  -  A ) ) ) ) )
153, 5, 8, 11, 14syl22anc 1265 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( T  e.  ( 0 [,] 1
)  <->  ( T  x.  ( B  -  A
) )  e.  ( ( 0  x.  ( B  -  A )
) [,] ( 1  x.  ( B  -  A ) ) ) ) )
161, 15mpbid 213 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( T  x.  ( B  -  A
) )  e.  ( ( 0  x.  ( B  -  A )
) [,] ( 1  x.  ( B  -  A ) ) ) )
17 simpl2 1009 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  B  e.  RR )
18 simpl1 1008 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  A  e.  RR )
1917, 18resubcld 10048 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( B  -  A )  e.  RR )
2019recnd 9670 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( B  -  A )  e.  CC )
2120mul02d 9832 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( 0  x.  ( B  -  A
) )  =  0 )
2220mulid2d 9662 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( 1  x.  ( B  -  A
) )  =  ( B  -  A ) )
2321, 22oveq12d 6320 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( 0  x.  ( B  -  A ) ) [,] ( 1  x.  ( B  -  A )
) )  =  ( 0 [,] ( B  -  A ) ) )
2416, 23eleqtrd 2512 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( T  x.  ( B  -  A
) )  e.  ( 0 [,] ( B  -  A ) ) )
258, 19remulcld 9672 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( T  x.  ( B  -  A
) )  e.  RR )
26 eqid 2422 . . . . 5  |-  ( 0  +  A )  =  ( 0  +  A
)
27 eqid 2422 . . . . 5  |-  ( ( B  -  A )  +  A )  =  ( ( B  -  A )  +  A
)
2826, 27iccshftr 11767 . . . 4  |-  ( ( ( 0  e.  RR  /\  ( B  -  A
)  e.  RR )  /\  ( ( T  x.  ( B  -  A ) )  e.  RR  /\  A  e.  RR ) )  -> 
( ( T  x.  ( B  -  A
) )  e.  ( 0 [,] ( B  -  A ) )  <-> 
( ( T  x.  ( B  -  A
) )  +  A
)  e.  ( ( 0  +  A ) [,] ( ( B  -  A )  +  A ) ) ) )
293, 19, 25, 18, 28syl22anc 1265 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( T  x.  ( B  -  A ) )  e.  ( 0 [,] ( B  -  A )
)  <->  ( ( T  x.  ( B  -  A ) )  +  A )  e.  ( ( 0  +  A
) [,] ( ( B  -  A )  +  A ) ) ) )
3024, 29mpbid 213 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( T  x.  ( B  -  A ) )  +  A )  e.  ( ( 0  +  A
) [,] ( ( B  -  A )  +  A ) ) )
318recnd 9670 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  T  e.  CC )
3217recnd 9670 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  B  e.  CC )
3331, 32mulcld 9664 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( T  x.  B )  e.  CC )
3418recnd 9670 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  A  e.  CC )
3531, 34mulcld 9664 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( T  x.  A )  e.  CC )
3633, 35, 34subadd23d 10009 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( ( T  x.  B )  -  ( T  x.  A ) )  +  A )  =  ( ( T  x.  B
)  +  ( A  -  ( T  x.  A ) ) ) )
3731, 32, 34subdid 10075 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( T  x.  ( B  -  A
) )  =  ( ( T  x.  B
)  -  ( T  x.  A ) ) )
3837oveq1d 6317 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( T  x.  ( B  -  A ) )  +  A )  =  ( ( ( T  x.  B )  -  ( T  x.  A )
)  +  A ) )
39 resubcl 9939 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  T  e.  RR )  ->  ( 1  -  T
)  e.  RR )
404, 8, 39sylancr 667 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( 1  -  T )  e.  RR )
4140, 18remulcld 9672 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  T )  x.  A )  e.  RR )
4241recnd 9670 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  T )  x.  A )  e.  CC )
4342, 33addcomd 9836 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  T )  x.  A )  +  ( T  x.  B
) )  =  ( ( T  x.  B
)  +  ( ( 1  -  T )  x.  A ) ) )
44 1cnd 9660 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  1  e.  CC )
4544, 31, 34subdird 10076 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  T )  x.  A )  =  ( ( 1  x.  A
)  -  ( T  x.  A ) ) )
4634mulid2d 9662 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( 1  x.  A )  =  A )
4746oveq1d 6317 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( 1  x.  A )  -  ( T  x.  A
) )  =  ( A  -  ( T  x.  A ) ) )
4845, 47eqtrd 2463 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  T )  x.  A )  =  ( A  -  ( T  x.  A ) ) )
4948oveq2d 6318 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( T  x.  B )  +  ( ( 1  -  T )  x.  A
) )  =  ( ( T  x.  B
)  +  ( A  -  ( T  x.  A ) ) ) )
5043, 49eqtrd 2463 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  T )  x.  A )  +  ( T  x.  B
) )  =  ( ( T  x.  B
)  +  ( A  -  ( T  x.  A ) ) ) )
5136, 38, 503eqtr4d 2473 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( T  x.  ( B  -  A ) )  +  A )  =  ( ( ( 1  -  T )  x.  A
)  +  ( T  x.  B ) ) )
5234addid2d 9835 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( 0  +  A )  =  A )
5332, 34npcand 9991 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( B  -  A )  +  A )  =  B )
5452, 53oveq12d 6320 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( 0  +  A ) [,] ( ( B  -  A )  +  A
) )  =  ( A [,] B ) )
5530, 51, 543eltr3d 2524 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  T )  x.  A )  +  ( T  x.  B
) )  e.  ( A [,] B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    e. wcel 1868   class class class wbr 4420  (class class class)co 6302   RRcr 9539   0cc0 9540   1c1 9541    + caddc 9543    x. cmul 9545    < clt 9676    <_ cle 9677    - cmin 9861   RR+crp 11303   [,]cicc 11639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-sep 4543  ax-nul 4552  ax-pow 4599  ax-pr 4657  ax-un 6594  ax-cnex 9596  ax-resscn 9597  ax-1cn 9598  ax-icn 9599  ax-addcl 9600  ax-addrcl 9601  ax-mulcl 9602  ax-mulrcl 9603  ax-mulcom 9604  ax-addass 9605  ax-mulass 9606  ax-distr 9607  ax-i2m1 9608  ax-1ne0 9609  ax-1rid 9610  ax-rnegex 9611  ax-rrecex 9612  ax-cnre 9613  ax-pre-lttri 9614  ax-pre-lttrn 9615  ax-pre-ltadd 9616  ax-pre-mulgt0 9617
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-op 4003  df-uni 4217  df-br 4421  df-opab 4480  df-mpt 4481  df-id 4765  df-po 4771  df-so 4772  df-xp 4856  df-rel 4857  df-cnv 4858  df-co 4859  df-dm 4860  df-rn 4861  df-res 4862  df-ima 4863  df-iota 5562  df-fun 5600  df-fn 5601  df-f 5602  df-f1 5603  df-fo 5604  df-f1o 5605  df-fv 5606  df-riota 6264  df-ov 6305  df-oprab 6306  df-mpt2 6307  df-er 7368  df-en 7575  df-dom 7576  df-sdom 7577  df-pnf 9678  df-mnf 9679  df-xr 9680  df-ltxr 9681  df-le 9682  df-sub 9863  df-neg 9864  df-rp 11304  df-icc 11643
This theorem is referenced by:  iccf1o  11777  icccvx  21965  efcvx  23391  logccv  23595  cvxcl  23897
  Copyright terms: Public domain W3C validator