MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limuni3 Structured version   Unicode version

Theorem limuni3 6660
Description: The union of a nonempty class of limit ordinals is a limit ordinal. (Contributed by NM, 1-Feb-2005.)
Assertion
Ref Expression
limuni3  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  Lim  x )  ->  Lim  U. A )
Distinct variable group:    x, A

Proof of Theorem limuni3
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limeq 4879 . . . . . . 7  |-  ( x  =  z  ->  ( Lim  x  <->  Lim  z ) )
21rspcv 3203 . . . . . 6  |-  ( z  e.  A  ->  ( A. x  e.  A  Lim  x  ->  Lim  z ) )
3 vex 3109 . . . . . . 7  |-  z  e. 
_V
4 limelon 4930 . . . . . . 7  |-  ( ( z  e.  _V  /\  Lim  z )  ->  z  e.  On )
53, 4mpan 668 . . . . . 6  |-  ( Lim  z  ->  z  e.  On )
62, 5syl6com 35 . . . . 5  |-  ( A. x  e.  A  Lim  x  ->  ( z  e.  A  ->  z  e.  On ) )
76ssrdv 3495 . . . 4  |-  ( A. x  e.  A  Lim  x  ->  A  C_  On )
8 ssorduni 6594 . . . 4  |-  ( A 
C_  On  ->  Ord  U. A )
97, 8syl 16 . . 3  |-  ( A. x  e.  A  Lim  x  ->  Ord  U. A )
109adantl 464 . 2  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  Lim  x )  ->  Ord  U. A )
11 n0 3793 . . . 4  |-  ( A  =/=  (/)  <->  E. z  z  e.  A )
12 0ellim 4929 . . . . . . 7  |-  ( Lim  z  ->  (/)  e.  z )
13 elunii 4240 . . . . . . . 8  |-  ( (
(/)  e.  z  /\  z  e.  A )  -> 
(/)  e.  U. A )
1413expcom 433 . . . . . . 7  |-  ( z  e.  A  ->  ( (/) 
e.  z  ->  (/)  e.  U. A ) )
1512, 14syl5 32 . . . . . 6  |-  ( z  e.  A  ->  ( Lim  z  ->  (/)  e.  U. A ) )
162, 15syld 44 . . . . 5  |-  ( z  e.  A  ->  ( A. x  e.  A  Lim  x  ->  (/)  e.  U. A ) )
1716exlimiv 1727 . . . 4  |-  ( E. z  z  e.  A  ->  ( A. x  e.  A  Lim  x  ->  (/) 
e.  U. A ) )
1811, 17sylbi 195 . . 3  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  Lim  x  ->  (/)  e.  U. A
) )
1918imp 427 . 2  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  Lim  x )  ->  (/)  e.  U. A )
20 eluni2 4239 . . . . 5  |-  ( y  e.  U. A  <->  E. z  e.  A  y  e.  z )
211rspccv 3204 . . . . . . 7  |-  ( A. x  e.  A  Lim  x  ->  ( z  e.  A  ->  Lim  z ) )
22 limsuc 6657 . . . . . . . . . . 11  |-  ( Lim  z  ->  ( y  e.  z  <->  suc  y  e.  z ) )
2322anbi1d 702 . . . . . . . . . 10  |-  ( Lim  z  ->  ( (
y  e.  z  /\  z  e.  A )  <->  ( suc  y  e.  z  /\  z  e.  A
) ) )
24 elunii 4240 . . . . . . . . . 10  |-  ( ( suc  y  e.  z  /\  z  e.  A
)  ->  suc  y  e. 
U. A )
2523, 24syl6bi 228 . . . . . . . . 9  |-  ( Lim  z  ->  ( (
y  e.  z  /\  z  e.  A )  ->  suc  y  e.  U. A ) )
2625expd 434 . . . . . . . 8  |-  ( Lim  z  ->  ( y  e.  z  ->  ( z  e.  A  ->  suc  y  e.  U. A ) ) )
2726com3r 79 . . . . . . 7  |-  ( z  e.  A  ->  ( Lim  z  ->  ( y  e.  z  ->  suc  y  e.  U. A ) ) )
2821, 27sylcom 29 . . . . . 6  |-  ( A. x  e.  A  Lim  x  ->  ( z  e.  A  ->  ( y  e.  z  ->  suc  y  e.  U. A ) ) )
2928rexlimdv 2944 . . . . 5  |-  ( A. x  e.  A  Lim  x  ->  ( E. z  e.  A  y  e.  z  ->  suc  y  e.  U. A ) )
3020, 29syl5bi 217 . . . 4  |-  ( A. x  e.  A  Lim  x  ->  ( y  e. 
U. A  ->  suc  y  e.  U. A ) )
3130ralrimiv 2866 . . 3  |-  ( A. x  e.  A  Lim  x  ->  A. y  e.  U. A  suc  y  e.  U. A )
3231adantl 464 . 2  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  Lim  x )  ->  A. y  e.  U. A  suc  y  e.  U. A )
33 dflim4 6656 . 2  |-  ( Lim  U. A  <->  ( Ord  U. A  /\  (/)  e.  U. A  /\  A. y  e.  U. A  suc  y  e.  U. A ) )
3410, 19, 32, 33syl3anbrc 1178 1  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  Lim  x )  ->  Lim  U. A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367   E.wex 1617    e. wcel 1823    =/= wne 2649   A.wral 2804   E.wrex 2805   _Vcvv 3106    C_ wss 3461   (/)c0 3783   U.cuni 4235   Ord word 4866   Oncon0 4867   Lim wlim 4868   suc csuc 4869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-tr 4533  df-eprel 4780  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator