MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupval Unicode version

Theorem limsupval 12223
Description: The superior limit of an infinite sequence  F of extended real numbers, which is the infimum (indicated by  `'  <) of the set of suprema of all upper infinite subsequences of  F. Definition 12-4.1 of [Gleason] p. 175. (Contributed by NM, 26-Oct-2005.) (Revised by Mario Carneiro, 5-Sep-2014.)
Hypothesis
Ref Expression
limsupval.1  |-  G  =  ( k  e.  RR  |->  sup ( ( ( F
" ( k [,) 
+oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
Assertion
Ref Expression
limsupval  |-  ( F  e.  V  ->  ( limsup `
 F )  =  sup ( ran  G ,  RR* ,  `'  <  ) )
Distinct variable group:    k, F
Allowed substitution hints:    G( k)    V( k)

Proof of Theorem limsupval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elex 2924 . 2  |-  ( F  e.  V  ->  F  e.  _V )
2 imaeq1 5157 . . . . . . . . 9  |-  ( x  =  F  ->  (
x " ( k [,)  +oo ) )  =  ( F " (
k [,)  +oo ) ) )
32ineq1d 3501 . . . . . . . 8  |-  ( x  =  F  ->  (
( x " (
k [,)  +oo ) )  i^i  RR* )  =  ( ( F " (
k [,)  +oo ) )  i^i  RR* ) )
43supeq1d 7409 . . . . . . 7  |-  ( x  =  F  ->  sup ( ( ( x
" ( k [,) 
+oo ) )  i^i  RR* ) ,  RR* ,  <  )  =  sup ( ( ( F " (
k [,)  +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
54mpteq2dv 4256 . . . . . 6  |-  ( x  =  F  ->  (
k  e.  RR  |->  sup ( ( ( x
" ( k [,) 
+oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  =  ( k  e.  RR  |->  sup (
( ( F "
( k [,)  +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) )
6 limsupval.1 . . . . . 6  |-  G  =  ( k  e.  RR  |->  sup ( ( ( F
" ( k [,) 
+oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
75, 6syl6eqr 2454 . . . . 5  |-  ( x  =  F  ->  (
k  e.  RR  |->  sup ( ( ( x
" ( k [,) 
+oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  =  G )
87rneqd 5056 . . . 4  |-  ( x  =  F  ->  ran  ( k  e.  RR  |->  sup ( ( ( x
" ( k [,) 
+oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  =  ran  G
)
98supeq1d 7409 . . 3  |-  ( x  =  F  ->  sup ( ran  ( k  e.  RR  |->  sup ( ( ( x " ( k [,)  +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) ,  RR* ,  `'  <  )  =  sup ( ran  G ,  RR* ,  `'  <  ) )
10 df-limsup 12220 . . 3  |-  limsup  =  ( x  e.  _V  |->  sup ( ran  ( k  e.  RR  |->  sup (
( ( x "
( k [,)  +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) ,  RR* ,  `'  <  ) )
11 xrltso 10690 . . . . 5  |-  <  Or  RR*
12 cnvso 5370 . . . . 5  |-  (  < 
Or  RR*  <->  `'  <  Or  RR* )
1311, 12mpbi 200 . . . 4  |-  `'  <  Or 
RR*
1413supex 7424 . . 3  |-  sup ( ran  G ,  RR* ,  `'  <  )  e.  _V
159, 10, 14fvmpt 5765 . 2  |-  ( F  e.  _V  ->  ( limsup `
 F )  =  sup ( ran  G ,  RR* ,  `'  <  ) )
161, 15syl 16 1  |-  ( F  e.  V  ->  ( limsup `
 F )  =  sup ( ran  G ,  RR* ,  `'  <  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1721   _Vcvv 2916    i^i cin 3279    e. cmpt 4226    Or wor 4462   `'ccnv 4836   ran crn 4838   "cima 4840   ` cfv 5413  (class class class)co 6040   supcsup 7403   RRcr 8945    +oocpnf 9073   RR*cxr 9075    < clt 9076   [,)cico 10874   limsupclsp 12219
This theorem is referenced by:  limsuple  12227  limsupval2  12229
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-pre-lttri 9020  ax-pre-lttrn 9021
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-po 4463  df-so 4464  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-limsup 12220
  Copyright terms: Public domain W3C validator