MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupgre Unicode version

Theorem limsupgre 12230
Description: If a sequence of real numbers has upper bounded limit supremum, then all the partial suprema are real. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
limsupval.1  |-  G  =  ( k  e.  RR  |->  sup ( ( ( F
" ( k [,) 
+oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
limsupgre.z  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
limsupgre  |-  ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  ->  G : RR --> RR )
Distinct variable groups:    k, F    k, M    k, Z
Allowed substitution hint:    G( k)

Proof of Theorem limsupgre
Dummy variables  n  i  a  m  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltso 10690 . . . 4  |-  <  Or  RR*
21supex 7424 . . 3  |-  sup (
( ( F "
( k [,)  +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  _V
32a1i 11 . 2  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  k  e.  RR )  ->  sup ( ( ( F
" ( k [,) 
+oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  _V )
4 limsupval.1 . . 3  |-  G  =  ( k  e.  RR  |->  sup ( ( ( F
" ( k [,) 
+oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
54a1i 11 . 2  |-  ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  ->  G  =  ( k  e.  RR  |->  sup ( ( ( F " ( k [,)  +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) )
64limsupgval 12225 . . . 4  |-  ( a  e.  RR  ->  ( G `  a )  =  sup ( ( ( F " ( a [,)  +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
76adantl 453 . . 3  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  ( G `  a )  =  sup ( ( ( F " ( a [,)  +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
8 simpl3 962 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  ( limsup `
 F )  <  +oo )
9 limsupgre.z . . . . . . . . . . 11  |-  Z  =  ( ZZ>= `  M )
10 uzssz 10461 . . . . . . . . . . 11  |-  ( ZZ>= `  M )  C_  ZZ
119, 10eqsstri 3338 . . . . . . . . . 10  |-  Z  C_  ZZ
12 zssre 10245 . . . . . . . . . 10  |-  ZZ  C_  RR
1311, 12sstri 3317 . . . . . . . . 9  |-  Z  C_  RR
1413a1i 11 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  Z  C_  RR )
15 simpl2 961 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  F : Z --> RR )
16 ressxr 9085 . . . . . . . . 9  |-  RR  C_  RR*
17 fss 5558 . . . . . . . . 9  |-  ( ( F : Z --> RR  /\  RR  C_  RR* )  ->  F : Z --> RR* )
1815, 16, 17sylancl 644 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  F : Z --> RR* )
19 pnfxr 10669 . . . . . . . . 9  |-  +oo  e.  RR*
2019a1i 11 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  +oo  e.  RR* )
214limsuplt 12228 . . . . . . . 8  |-  ( ( Z  C_  RR  /\  F : Z --> RR*  /\  +oo  e.  RR* )  ->  ( ( limsup `
 F )  <  +oo 
<->  E. n  e.  RR  ( G `  n )  <  +oo ) )
2214, 18, 20, 21syl3anc 1184 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  (
( limsup `  F )  <  +oo  <->  E. n  e.  RR  ( G `  n )  <  +oo ) )
238, 22mpbid 202 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  E. n  e.  RR  ( G `  n )  <  +oo )
24 fzfi 11266 . . . . . . . 8  |-  ( M ... ( |_ `  n ) )  e. 
Fin
2515adantr 452 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  F : Z
--> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  ( n  e.  RR  /\  ( G `
 n )  <  +oo ) )  ->  F : Z --> RR )
26 elfzuz 11011 . . . . . . . . . . 11  |-  ( m  e.  ( M ... ( |_ `  n ) )  ->  m  e.  ( ZZ>= `  M )
)
2726, 9syl6eleqr 2495 . . . . . . . . . 10  |-  ( m  e.  ( M ... ( |_ `  n ) )  ->  m  e.  Z )
28 ffvelrn 5827 . . . . . . . . . 10  |-  ( ( F : Z --> RR  /\  m  e.  Z )  ->  ( F `  m
)  e.  RR )
2925, 27, 28syl2an 464 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  m  e.  ( M ... ( |_ `  n
) ) )  -> 
( F `  m
)  e.  RR )
3029ralrimiva 2749 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  F : Z
--> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  ( n  e.  RR  /\  ( G `
 n )  <  +oo ) )  ->  A. m  e.  ( M ... ( |_ `  n ) ) ( F `  m
)  e.  RR )
31 fimaxre3 9913 . . . . . . . 8  |-  ( ( ( M ... ( |_ `  n ) )  e.  Fin  /\  A. m  e.  ( M ... ( |_ `  n
) ) ( F `
 m )  e.  RR )  ->  E. r  e.  RR  A. m  e.  ( M ... ( |_ `  n ) ) ( F `  m
)  <_  r )
3224, 30, 31sylancr 645 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  F : Z
--> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  ( n  e.  RR  /\  ( G `
 n )  <  +oo ) )  ->  E. r  e.  RR  A. m  e.  ( M ... ( |_ `  n ) ) ( F `  m
)  <_  r )
33 simpr 448 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  a  e.  RR )
3433ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  a  e.  RR )
354limsupgf 12224 . . . . . . . . . 10  |-  G : RR
--> RR*
3635ffvelrni 5828 . . . . . . . . 9  |-  ( a  e.  RR  ->  ( G `  a )  e.  RR* )
3734, 36syl 16 . . . . . . . 8  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( G `  a )  e.  RR* )
38 simprl 733 . . . . . . . . . 10  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  r  e.  RR )
3916, 38sseldi 3306 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  r  e.  RR* )
40 simprl 733 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  F : Z
--> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  ( n  e.  RR  /\  ( G `
 n )  <  +oo ) )  ->  n  e.  RR )
4140adantr 452 . . . . . . . . . 10  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  n  e.  RR )
4235ffvelrni 5828 . . . . . . . . . 10  |-  ( n  e.  RR  ->  ( G `  n )  e.  RR* )
4341, 42syl 16 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( G `  n )  e.  RR* )
44 ifcl 3735 . . . . . . . . 9  |-  ( ( r  e.  RR*  /\  ( G `  n )  e.  RR* )  ->  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  e.  RR* )
4539, 43, 44syl2anc 643 . . . . . . . 8  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  if (
( G `  n
)  <_  r , 
r ,  ( G `
 n ) )  e.  RR* )
4619a1i 11 . . . . . . . 8  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  +oo  e.  RR* )
4740ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  n  e.  RR )
4813a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  Z  C_  RR )
4948sselda 3308 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  i  e.  RR )
50 xrleid 10699 . . . . . . . . . . . . . . . . 17  |-  ( ( G `  n )  e.  RR*  ->  ( G `
 n )  <_ 
( G `  n
) )
5143, 50syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( G `  n )  <_  ( G `  n )
)
5218ad2antrr 707 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  F : Z
--> RR* )
534limsupgle 12226 . . . . . . . . . . . . . . . . 17  |-  ( ( ( Z  C_  RR  /\  F : Z --> RR* )  /\  n  e.  RR  /\  ( G `  n
)  e.  RR* )  ->  ( ( G `  n )  <_  ( G `  n )  <->  A. i  e.  Z  ( n  <_  i  ->  ( F `  i )  <_  ( G `  n ) ) ) )
5448, 52, 41, 43, 53syl211anc 1190 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( ( G `  n )  <_  ( G `  n
)  <->  A. i  e.  Z  ( n  <_  i  -> 
( F `  i
)  <_  ( G `  n ) ) ) )
5551, 54mpbid 202 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  A. i  e.  Z  ( n  <_  i  ->  ( F `  i )  <_  ( G `  n )
) )
5655r19.21bi 2764 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
n  <_  i  ->  ( F `  i )  <_  ( G `  n ) ) )
5756imp 419 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  n  <_  i )  ->  ( F `  i )  <_  ( G `  n
) )
5847, 42syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  ( G `  n )  e.  RR* )
5939adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  r  e.  RR* )
60 xrmax1 10719 . . . . . . . . . . . . . . . 16  |-  ( ( ( G `  n
)  e.  RR*  /\  r  e.  RR* )  ->  ( G `  n )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
6158, 59, 60syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  ( G `  n )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
6252ffvelrnda 5829 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  ( F `  i )  e.  RR* )
6345adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  e.  RR* )
64 xrletr 10704 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  i
)  e.  RR*  /\  ( G `  n )  e.  RR*  /\  if ( ( G `  n
)  <_  r , 
r ,  ( G `
 n ) )  e.  RR* )  ->  (
( ( F `  i )  <_  ( G `  n )  /\  ( G `  n
)  <_  if (
( G `  n
)  <_  r , 
r ,  ( G `
 n ) ) )  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
6562, 58, 63, 64syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
( ( F `  i )  <_  ( G `  n )  /\  ( G `  n
)  <_  if (
( G `  n
)  <_  r , 
r ,  ( G `
 n ) ) )  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
6661, 65mpan2d 656 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
( F `  i
)  <_  ( G `  n )  ->  ( F `  i )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) ) )
6766adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  n  <_  i )  ->  (
( F `  i
)  <_  ( G `  n )  ->  ( F `  i )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) ) )
6857, 67mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  n  <_  i )  ->  ( F `  i )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
69 simpr 448 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  i  e.  Z )
7069, 9syl6eleq 2494 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  i  e.  ( ZZ>= `  M )
)
7141flcld 11162 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( |_ `  n )  e.  ZZ )
7271adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  ( |_ `  n )  e.  ZZ )
73 elfz5 11007 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( ZZ>= `  M )  /\  ( |_ `  n )  e.  ZZ )  ->  (
i  e.  ( M ... ( |_ `  n ) )  <->  i  <_  ( |_ `  n ) ) )
7470, 72, 73syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
i  e.  ( M ... ( |_ `  n ) )  <->  i  <_  ( |_ `  n ) ) )
7511, 69sseldi 3306 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  i  e.  ZZ )
76 flge 11169 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  RR  /\  i  e.  ZZ )  ->  ( i  <_  n  <->  i  <_  ( |_ `  n ) ) )
7747, 75, 76syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
i  <_  n  <->  i  <_  ( |_ `  n ) ) )
7874, 77bitr4d 248 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
i  e.  ( M ... ( |_ `  n ) )  <->  i  <_  n ) )
7978biimpar 472 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  i  <_  n )  ->  i  e.  ( M ... ( |_ `  n ) ) )
80 simprr 734 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  A. m  e.  ( M ... ( |_ `  n ) ) ( F `  m
)  <_  r )
8180ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  i  <_  n )  ->  A. m  e.  ( M ... ( |_ `  n ) ) ( F `  m
)  <_  r )
82 fveq2 5687 . . . . . . . . . . . . . . . 16  |-  ( m  =  i  ->  ( F `  m )  =  ( F `  i ) )
8382breq1d 4182 . . . . . . . . . . . . . . 15  |-  ( m  =  i  ->  (
( F `  m
)  <_  r  <->  ( F `  i )  <_  r
) )
8483rspcv 3008 . . . . . . . . . . . . . 14  |-  ( i  e.  ( M ... ( |_ `  n ) )  ->  ( A. m  e.  ( M ... ( |_ `  n
) ) ( F `
 m )  <_ 
r  ->  ( F `  i )  <_  r
) )
8579, 81, 84sylc 58 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  i  <_  n )  ->  ( F `  i )  <_  r )
86 xrmax2 10720 . . . . . . . . . . . . . . . . 17  |-  ( ( ( G `  n
)  e.  RR*  /\  r  e.  RR* )  ->  r  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
8743, 39, 86syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  r  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) )
8887adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  r  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
89 xrletr 10704 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  i
)  e.  RR*  /\  r  e.  RR*  /\  if ( ( G `  n
)  <_  r , 
r ,  ( G `
 n ) )  e.  RR* )  ->  (
( ( F `  i )  <_  r  /\  r  <_  if ( ( G `  n
)  <_  r , 
r ,  ( G `
 n ) ) )  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
9062, 59, 63, 89syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
( ( F `  i )  <_  r  /\  r  <_  if ( ( G `  n
)  <_  r , 
r ,  ( G `
 n ) ) )  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
9188, 90mpan2d 656 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
( F `  i
)  <_  r  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
9291adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  i  <_  n )  ->  (
( F `  i
)  <_  r  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
9385, 92mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  i  <_  n )  ->  ( F `  i )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
9447, 49, 68, 93lecasei 9135 . . . . . . . . . . 11  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  ( F `  i )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
9594a1d 23 . . . . . . . . . 10  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
a  <_  i  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
9695ralrimiva 2749 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  A. i  e.  Z  ( a  <_  i  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
974limsupgle 12226 . . . . . . . . . 10  |-  ( ( ( Z  C_  RR  /\  F : Z --> RR* )  /\  a  e.  RR  /\  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) )  e.  RR* )  ->  ( ( G `
 a )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  <->  A. i  e.  Z  ( a  <_  i  ->  ( F `  i
)  <_  if (
( G `  n
)  <_  r , 
r ,  ( G `
 n ) ) ) ) )
9848, 52, 34, 45, 97syl211anc 1190 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( ( G `  a )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) )  <->  A. i  e.  Z  ( a  <_  i  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) ) )
9996, 98mpbird 224 . . . . . . . 8  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( G `  a )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) )
100 ltpnf 10677 . . . . . . . . . 10  |-  ( r  e.  RR  ->  r  <  +oo )
10138, 100syl 16 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  r  <  +oo )
102 simplrr 738 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( G `  n )  <  +oo )
103 breq1 4175 . . . . . . . . . 10  |-  ( r  =  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  -> 
( r  <  +oo  <->  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  <  +oo )
)
104 breq1 4175 . . . . . . . . . 10  |-  ( ( G `  n )  =  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  -> 
( ( G `  n )  <  +oo  <->  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  <  +oo )
)
105103, 104ifboth 3730 . . . . . . . . 9  |-  ( ( r  <  +oo  /\  ( G `  n )  <  +oo )  ->  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  <  +oo )
106101, 102, 105syl2anc 643 . . . . . . . 8  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  if (
( G `  n
)  <_  r , 
r ,  ( G `
 n ) )  <  +oo )
10737, 45, 46, 99, 106xrlelttrd 10706 . . . . . . 7  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  <  +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  <  +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( G `  a )  <  +oo )
10832, 107rexlimddv 2794 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  F : Z
--> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  /\  ( n  e.  RR  /\  ( G `
 n )  <  +oo ) )  ->  ( G `  a )  <  +oo )
10923, 108rexlimddv 2794 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  ( G `  a )  <  +oo )
1107, 109eqbrtrrd 4194 . . . 4  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  sup ( ( ( F
" ( a [,) 
+oo ) )  i^i  RR* ) ,  RR* ,  <  )  <  +oo )
111 imassrn 5175 . . . . . . . . 9  |-  ( F
" ( a [,) 
+oo ) )  C_  ran  F
112 frn 5556 . . . . . . . . . 10  |-  ( F : Z --> RR  ->  ran 
F  C_  RR )
11315, 112syl 16 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  ran  F 
C_  RR )
114111, 113syl5ss 3319 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  ( F " ( a [,) 
+oo ) )  C_  RR )
115114, 16syl6ss 3320 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  ( F " ( a [,) 
+oo ) )  C_  RR* )
116 df-ss 3294 . . . . . . 7  |-  ( ( F " ( a [,)  +oo ) )  C_  RR*  <->  ( ( F " (
a [,)  +oo ) )  i^i  RR* )  =  ( F " ( a [,)  +oo ) ) )
117115, 116sylib 189 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  (
( F " (
a [,)  +oo ) )  i^i  RR* )  =  ( F " ( a [,)  +oo ) ) )
118117, 114eqsstrd 3342 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  (
( F " (
a [,)  +oo ) )  i^i  RR* )  C_  RR )
119 simpl1 960 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  M  e.  ZZ )
120 flcl 11159 . . . . . . . . . . . . . 14  |-  ( a  e.  RR  ->  ( |_ `  a )  e.  ZZ )
121120adantl 453 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  ( |_ `  a )  e.  ZZ )
122121peano2zd 10334 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  (
( |_ `  a
)  +  1 )  e.  ZZ )
123 ifcl 3735 . . . . . . . . . . . 12  |-  ( ( ( ( |_ `  a )  +  1 )  e.  ZZ  /\  M  e.  ZZ )  ->  if ( M  <_ 
( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  ZZ )
124122, 119, 123syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  ZZ )
125119zred 10331 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  M  e.  RR )
126122zred 10331 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  (
( |_ `  a
)  +  1 )  e.  RR )
127 max1 10729 . . . . . . . . . . . 12  |-  ( ( M  e.  RR  /\  ( ( |_ `  a )  +  1 )  e.  RR )  ->  M  <_  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M ) )
128125, 126, 127syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  M  <_  if ( M  <_ 
( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M ) )
129 eluz2 10450 . . . . . . . . . . 11  |-  ( if ( M  <_  (
( |_ `  a
)  +  1 ) ,  ( ( |_
`  a )  +  1 ) ,  M
)  e.  ( ZZ>= `  M )  <->  ( M  e.  ZZ  /\  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a
)  +  1 ) ,  M )  e.  ZZ  /\  M  <_  if ( M  <_  (
( |_ `  a
)  +  1 ) ,  ( ( |_
`  a )  +  1 ) ,  M
) ) )
130119, 124, 128, 129syl3anbrc 1138 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  ( ZZ>= `  M
) )
131130, 9syl6eleqr 2495 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  Z )
132 fdm 5554 . . . . . . . . . 10  |-  ( F : Z --> RR  ->  dom 
F  =  Z )
13315, 132syl 16 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  dom  F  =  Z )
134131, 133eleqtrrd 2481 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  dom  F )
135124zred 10331 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  RR )
136 fllep1 11165 . . . . . . . . . . 11  |-  ( a  e.  RR  ->  a  <_  ( ( |_ `  a )  +  1 ) )
137136adantl 453 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  a  <_  ( ( |_ `  a )  +  1 ) )
138 max2 10731 . . . . . . . . . . 11  |-  ( ( M  e.  RR  /\  ( ( |_ `  a )  +  1 )  e.  RR )  ->  ( ( |_
`  a )  +  1 )  <_  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M ) )
139125, 126, 138syl2anc 643 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  (
( |_ `  a
)  +  1 )  <_  if ( M  <_  ( ( |_
`  a )  +  1 ) ,  ( ( |_ `  a
)  +  1 ) ,  M ) )
14033, 126, 135, 137, 139letrd 9183 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  a  <_  if ( M  <_ 
( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M ) )
141 elicopnf 10956 . . . . . . . . . 10  |-  ( a  e.  RR  ->  ( if ( M  <_  (
( |_ `  a
)  +  1 ) ,  ( ( |_
`  a )  +  1 ) ,  M
)  e.  ( a [,)  +oo )  <->  ( if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  RR  /\  a  <_  if ( M  <_ 
( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M ) ) ) )
142141adantl 453 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  ( if ( M  <_  (
( |_ `  a
)  +  1 ) ,  ( ( |_
`  a )  +  1 ) ,  M
)  e.  ( a [,)  +oo )  <->  ( if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  RR  /\  a  <_  if ( M  <_ 
( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M ) ) ) )
143135, 140, 142mpbir2and 889 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  ( a [,) 
+oo ) )
144 inelcm 3642 . . . . . . . 8  |-  ( ( if ( M  <_ 
( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  dom  F  /\  if ( M  <_  ( ( |_
`  a )  +  1 ) ,  ( ( |_ `  a
)  +  1 ) ,  M )  e.  ( a [,)  +oo ) )  ->  ( dom  F  i^i  ( a [,)  +oo ) )  =/=  (/) )
145134, 143, 144syl2anc 643 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  ( dom  F  i^i  ( a [,)  +oo ) )  =/=  (/) )
146 imadisj 5182 . . . . . . . 8  |-  ( ( F " ( a [,)  +oo ) )  =  (/) 
<->  ( dom  F  i^i  ( a [,)  +oo ) )  =  (/) )
147146necon3bii 2599 . . . . . . 7  |-  ( ( F " ( a [,)  +oo ) )  =/=  (/) 
<->  ( dom  F  i^i  ( a [,)  +oo ) )  =/=  (/) )
148145, 147sylibr 204 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  ( F " ( a [,) 
+oo ) )  =/=  (/) )
149117, 148eqnetrd 2585 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  (
( F " (
a [,)  +oo ) )  i^i  RR* )  =/=  (/) )
150 supxrre1 10865 . . . . 5  |-  ( ( ( ( F "
( a [,)  +oo ) )  i^i  RR* )  C_  RR  /\  (
( F " (
a [,)  +oo ) )  i^i  RR* )  =/=  (/) )  -> 
( sup ( ( ( F " (
a [,)  +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  RR  <->  sup ( ( ( F
" ( a [,) 
+oo ) )  i^i  RR* ) ,  RR* ,  <  )  <  +oo ) )
151118, 149, 150syl2anc 643 . . . 4  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  ( sup ( ( ( F
" ( a [,) 
+oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  RR  <->  sup (
( ( F "
( a [,)  +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <  +oo ) )
152110, 151mpbird 224 . . 3  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  sup ( ( ( F
" ( a [,) 
+oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  RR )
1537, 152eqeltrd 2478 . 2  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  /\  a  e.  RR )  ->  ( G `  a )  e.  RR )
1543, 5, 153fmpt2d 5857 1  |-  ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  <  +oo )  ->  G : RR --> RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667   _Vcvv 2916    i^i cin 3279    C_ wss 3280   (/)c0 3588   ifcif 3699   class class class wbr 4172    e. cmpt 4226   dom cdm 4837   ran crn 4838   "cima 4840   -->wf 5409   ` cfv 5413  (class class class)co 6040   Fincfn 7068   supcsup 7403   RRcr 8945   1c1 8947    + caddc 8949    +oocpnf 9073   RR*cxr 9075    < clt 9076    <_ cle 9077   ZZcz 10238   ZZ>=cuz 10444   [,)cico 10874   ...cfz 10999   |_cfl 11156   limsupclsp 12219
This theorem is referenced by:  mbflimsup  19511
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-n0 10178  df-z 10239  df-uz 10445  df-ico 10878  df-fz 11000  df-fl 11157  df-limsup 12220
  Copyright terms: Public domain W3C validator