MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupgre Structured version   Visualization version   Unicode version

Theorem limsupgre 13535
Description: If a sequence of real numbers has upper bounded limit supremum, then all the partial suprema are real. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
limsupval.1  |-  G  =  ( k  e.  RR  |->  sup ( ( ( F
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
limsupgre.z  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
limsupgre  |-  ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  ->  G : RR --> RR )
Distinct variable groups:    k, F    k, M    k, Z
Allowed substitution hint:    G( k)

Proof of Theorem limsupgre
Dummy variables  a 
i  m  n  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltso 11437 . . . 4  |-  <  Or  RR*
21supex 7974 . . 3  |-  sup (
( ( F "
( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  _V
32a1i 11 . 2  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  k  e.  RR )  ->  sup ( ( ( F
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  _V )
4 limsupval.1 . . 3  |-  G  =  ( k  e.  RR  |->  sup ( ( ( F
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
54a1i 11 . 2  |-  ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  ->  G  =  ( k  e.  RR  |->  sup ( ( ( F " ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) )
64limsupgval 13527 . . . 4  |-  ( a  e.  RR  ->  ( G `  a )  =  sup ( ( ( F " ( a [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
76adantl 468 . . 3  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( G `  a )  =  sup ( ( ( F " ( a [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
8 simpl3 1012 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( limsup `
 F )  < +oo )
9 limsupgre.z . . . . . . . . . . 11  |-  Z  =  ( ZZ>= `  M )
10 uzssz 11175 . . . . . . . . . . 11  |-  ( ZZ>= `  M )  C_  ZZ
119, 10eqsstri 3461 . . . . . . . . . 10  |-  Z  C_  ZZ
12 zssre 10941 . . . . . . . . . 10  |-  ZZ  C_  RR
1311, 12sstri 3440 . . . . . . . . 9  |-  Z  C_  RR
1413a1i 11 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  Z  C_  RR )
15 simpl2 1011 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  F : Z --> RR )
16 ressxr 9681 . . . . . . . . 9  |-  RR  C_  RR*
17 fss 5735 . . . . . . . . 9  |-  ( ( F : Z --> RR  /\  RR  C_  RR* )  ->  F : Z --> RR* )
1815, 16, 17sylancl 667 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  F : Z --> RR* )
19 pnfxr 11409 . . . . . . . . 9  |- +oo  e.  RR*
2019a1i 11 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  -> +oo  e.  RR* )
214limsuplt 13531 . . . . . . . 8  |-  ( ( Z  C_  RR  /\  F : Z --> RR*  /\ +oo  e.  RR* )  ->  ( ( limsup `
 F )  < +oo 
<->  E. n  e.  RR  ( G `  n )  < +oo ) )
2214, 18, 20, 21syl3anc 1267 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  (
( limsup `  F )  < +oo  <->  E. n  e.  RR  ( G `  n )  < +oo ) )
238, 22mpbid 214 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  E. n  e.  RR  ( G `  n )  < +oo )
24 fzfi 12182 . . . . . . . 8  |-  ( M ... ( |_ `  n ) )  e. 
Fin
2515adantr 467 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  F : Z
--> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  ( n  e.  RR  /\  ( G `
 n )  < +oo ) )  ->  F : Z --> RR )
26 elfzuz 11793 . . . . . . . . . . 11  |-  ( m  e.  ( M ... ( |_ `  n ) )  ->  m  e.  ( ZZ>= `  M )
)
2726, 9syl6eleqr 2539 . . . . . . . . . 10  |-  ( m  e.  ( M ... ( |_ `  n ) )  ->  m  e.  Z )
28 ffvelrn 6018 . . . . . . . . . 10  |-  ( ( F : Z --> RR  /\  m  e.  Z )  ->  ( F `  m
)  e.  RR )
2925, 27, 28syl2an 480 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  m  e.  ( M ... ( |_ `  n
) ) )  -> 
( F `  m
)  e.  RR )
3029ralrimiva 2801 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  F : Z
--> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  ( n  e.  RR  /\  ( G `
 n )  < +oo ) )  ->  A. m  e.  ( M ... ( |_ `  n ) ) ( F `  m
)  e.  RR )
31 fimaxre3 10550 . . . . . . . 8  |-  ( ( ( M ... ( |_ `  n ) )  e.  Fin  /\  A. m  e.  ( M ... ( |_ `  n
) ) ( F `
 m )  e.  RR )  ->  E. r  e.  RR  A. m  e.  ( M ... ( |_ `  n ) ) ( F `  m
)  <_  r )
3224, 30, 31sylancr 668 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  F : Z
--> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  ( n  e.  RR  /\  ( G `
 n )  < +oo ) )  ->  E. r  e.  RR  A. m  e.  ( M ... ( |_ `  n ) ) ( F `  m
)  <_  r )
33 simpr 463 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  a  e.  RR )
3433ad2antrr 731 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  a  e.  RR )
354limsupgf 13526 . . . . . . . . . 10  |-  G : RR
--> RR*
3635ffvelrni 6019 . . . . . . . . 9  |-  ( a  e.  RR  ->  ( G `  a )  e.  RR* )
3734, 36syl 17 . . . . . . . 8  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( G `  a )  e.  RR* )
38 simprl 763 . . . . . . . . . 10  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  r  e.  RR )
3916, 38sseldi 3429 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  r  e.  RR* )
40 simprl 763 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  F : Z
--> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  ( n  e.  RR  /\  ( G `
 n )  < +oo ) )  ->  n  e.  RR )
4140adantr 467 . . . . . . . . . 10  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  n  e.  RR )
4235ffvelrni 6019 . . . . . . . . . 10  |-  ( n  e.  RR  ->  ( G `  n )  e.  RR* )
4341, 42syl 17 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( G `  n )  e.  RR* )
4439, 43ifcld 3923 . . . . . . . 8  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  if (
( G `  n
)  <_  r , 
r ,  ( G `
 n ) )  e.  RR* )
4519a1i 11 . . . . . . . 8  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  -> +oo  e.  RR* )
4640ad2antrr 731 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  n  e.  RR )
4713a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  Z  C_  RR )
4847sselda 3431 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  i  e.  RR )
49 xrleid 11446 . . . . . . . . . . . . . . . . 17  |-  ( ( G `  n )  e.  RR*  ->  ( G `
 n )  <_ 
( G `  n
) )
5043, 49syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( G `  n )  <_  ( G `  n )
)
5118ad2antrr 731 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  F : Z
--> RR* )
524limsupgle 13528 . . . . . . . . . . . . . . . . 17  |-  ( ( ( Z  C_  RR  /\  F : Z --> RR* )  /\  n  e.  RR  /\  ( G `  n
)  e.  RR* )  ->  ( ( G `  n )  <_  ( G `  n )  <->  A. i  e.  Z  ( n  <_  i  ->  ( F `  i )  <_  ( G `  n ) ) ) )
5347, 51, 41, 43, 52syl211anc 1273 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( ( G `  n )  <_  ( G `  n
)  <->  A. i  e.  Z  ( n  <_  i  -> 
( F `  i
)  <_  ( G `  n ) ) ) )
5450, 53mpbid 214 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  A. i  e.  Z  ( n  <_  i  ->  ( F `  i )  <_  ( G `  n )
) )
5554r19.21bi 2756 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
n  <_  i  ->  ( F `  i )  <_  ( G `  n ) ) )
5655imp 431 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  n  <_  i )  ->  ( F `  i )  <_  ( G `  n
) )
5746, 42syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  ( G `  n )  e.  RR* )
5839adantr 467 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  r  e.  RR* )
59 xrmax1 11467 . . . . . . . . . . . . . . . 16  |-  ( ( ( G `  n
)  e.  RR*  /\  r  e.  RR* )  ->  ( G `  n )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
6057, 58, 59syl2anc 666 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  ( G `  n )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
6151ffvelrnda 6020 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  ( F `  i )  e.  RR* )
6244adantr 467 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  e.  RR* )
63 xrletr 11452 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  i
)  e.  RR*  /\  ( G `  n )  e.  RR*  /\  if ( ( G `  n
)  <_  r , 
r ,  ( G `
 n ) )  e.  RR* )  ->  (
( ( F `  i )  <_  ( G `  n )  /\  ( G `  n
)  <_  if (
( G `  n
)  <_  r , 
r ,  ( G `
 n ) ) )  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
6461, 57, 62, 63syl3anc 1267 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
( ( F `  i )  <_  ( G `  n )  /\  ( G `  n
)  <_  if (
( G `  n
)  <_  r , 
r ,  ( G `
 n ) ) )  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
6560, 64mpan2d 679 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
( F `  i
)  <_  ( G `  n )  ->  ( F `  i )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) ) )
6665adantr 467 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  n  <_  i )  ->  (
( F `  i
)  <_  ( G `  n )  ->  ( F `  i )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) ) )
6756, 66mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  n  <_  i )  ->  ( F `  i )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
68 simpr 463 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  i  e.  Z )
6968, 9syl6eleq 2538 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  i  e.  ( ZZ>= `  M )
)
7041flcld 12031 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( |_ `  n )  e.  ZZ )
7170adantr 467 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  ( |_ `  n )  e.  ZZ )
72 elfz5 11789 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( ZZ>= `  M )  /\  ( |_ `  n )  e.  ZZ )  ->  (
i  e.  ( M ... ( |_ `  n ) )  <->  i  <_  ( |_ `  n ) ) )
7369, 71, 72syl2anc 666 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
i  e.  ( M ... ( |_ `  n ) )  <->  i  <_  ( |_ `  n ) ) )
7411, 68sseldi 3429 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  i  e.  ZZ )
75 flge 12038 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  RR  /\  i  e.  ZZ )  ->  ( i  <_  n  <->  i  <_  ( |_ `  n ) ) )
7646, 74, 75syl2anc 666 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
i  <_  n  <->  i  <_  ( |_ `  n ) ) )
7773, 76bitr4d 260 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
i  e.  ( M ... ( |_ `  n ) )  <->  i  <_  n ) )
7877biimpar 488 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  i  <_  n )  ->  i  e.  ( M ... ( |_ `  n ) ) )
79 simprr 765 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  A. m  e.  ( M ... ( |_ `  n ) ) ( F `  m
)  <_  r )
8079ad2antrr 731 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  i  <_  n )  ->  A. m  e.  ( M ... ( |_ `  n ) ) ( F `  m
)  <_  r )
81 fveq2 5863 . . . . . . . . . . . . . . . 16  |-  ( m  =  i  ->  ( F `  m )  =  ( F `  i ) )
8281breq1d 4411 . . . . . . . . . . . . . . 15  |-  ( m  =  i  ->  (
( F `  m
)  <_  r  <->  ( F `  i )  <_  r
) )
8382rspcv 3145 . . . . . . . . . . . . . 14  |-  ( i  e.  ( M ... ( |_ `  n ) )  ->  ( A. m  e.  ( M ... ( |_ `  n
) ) ( F `
 m )  <_ 
r  ->  ( F `  i )  <_  r
) )
8478, 80, 83sylc 62 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  i  <_  n )  ->  ( F `  i )  <_  r )
85 xrmax2 11468 . . . . . . . . . . . . . . . . 17  |-  ( ( ( G `  n
)  e.  RR*  /\  r  e.  RR* )  ->  r  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
8643, 39, 85syl2anc 666 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  r  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) )
8786adantr 467 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  r  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
88 xrletr 11452 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  i
)  e.  RR*  /\  r  e.  RR*  /\  if ( ( G `  n
)  <_  r , 
r ,  ( G `
 n ) )  e.  RR* )  ->  (
( ( F `  i )  <_  r  /\  r  <_  if ( ( G `  n
)  <_  r , 
r ,  ( G `
 n ) ) )  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
8961, 58, 62, 88syl3anc 1267 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
( ( F `  i )  <_  r  /\  r  <_  if ( ( G `  n
)  <_  r , 
r ,  ( G `
 n ) ) )  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
9087, 89mpan2d 679 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
( F `  i
)  <_  r  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
9190adantr 467 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  i  <_  n )  ->  (
( F `  i
)  <_  r  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
9284, 91mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  i  <_  n )  ->  ( F `  i )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
9346, 48, 67, 92lecasei 9737 . . . . . . . . . . 11  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  ( F `  i )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
9493a1d 26 . . . . . . . . . 10  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
a  <_  i  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
9594ralrimiva 2801 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  A. i  e.  Z  ( a  <_  i  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
964limsupgle 13528 . . . . . . . . . 10  |-  ( ( ( Z  C_  RR  /\  F : Z --> RR* )  /\  a  e.  RR  /\  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) )  e.  RR* )  ->  ( ( G `
 a )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  <->  A. i  e.  Z  ( a  <_  i  ->  ( F `  i
)  <_  if (
( G `  n
)  <_  r , 
r ,  ( G `
 n ) ) ) ) )
9747, 51, 34, 44, 96syl211anc 1273 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( ( G `  a )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) )  <->  A. i  e.  Z  ( a  <_  i  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) ) )
9895, 97mpbird 236 . . . . . . . 8  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( G `  a )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) )
9938ltpnfd 11420 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  r  < +oo )
100 simplrr 770 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( G `  n )  < +oo )
101 breq1 4404 . . . . . . . . . 10  |-  ( r  =  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  -> 
( r  < +oo  <->  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  < +oo )
)
102 breq1 4404 . . . . . . . . . 10  |-  ( ( G `  n )  =  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  -> 
( ( G `  n )  < +oo  <->  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  < +oo )
)
103101, 102ifboth 3916 . . . . . . . . 9  |-  ( ( r  < +oo  /\  ( G `  n )  < +oo )  ->  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  < +oo )
10499, 100, 103syl2anc 666 . . . . . . . 8  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  if (
( G `  n
)  <_  r , 
r ,  ( G `
 n ) )  < +oo )
10537, 44, 45, 98, 104xrlelttrd 11454 . . . . . . 7  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( G `  a )  < +oo )
10632, 105rexlimddv 2882 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  F : Z
--> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  ( n  e.  RR  /\  ( G `
 n )  < +oo ) )  ->  ( G `  a )  < +oo )
10723, 106rexlimddv 2882 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( G `  a )  < +oo )
1087, 107eqbrtrrd 4424 . . . 4  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  sup ( ( ( F
" ( a [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  < +oo )
109 imassrn 5178 . . . . . . . . 9  |-  ( F
" ( a [,) +oo ) )  C_  ran  F
110 frn 5733 . . . . . . . . . 10  |-  ( F : Z --> RR  ->  ran 
F  C_  RR )
11115, 110syl 17 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ran  F 
C_  RR )
112109, 111syl5ss 3442 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( F " ( a [,) +oo ) )  C_  RR )
113112, 16syl6ss 3443 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( F " ( a [,) +oo ) )  C_  RR* )
114 df-ss 3417 . . . . . . 7  |-  ( ( F " ( a [,) +oo ) ) 
C_  RR*  <->  ( ( F
" ( a [,) +oo ) )  i^i  RR* )  =  ( F " ( a [,) +oo ) ) )
115113, 114sylib 200 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  (
( F " (
a [,) +oo )
)  i^i  RR* )  =  ( F " (
a [,) +oo )
) )
116115, 112eqsstrd 3465 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  (
( F " (
a [,) +oo )
)  i^i  RR* )  C_  RR )
117 simpl1 1010 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  M  e.  ZZ )
118 flcl 12028 . . . . . . . . . . . . . 14  |-  ( a  e.  RR  ->  ( |_ `  a )  e.  ZZ )
119118adantl 468 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( |_ `  a )  e.  ZZ )
120119peano2zd 11040 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  (
( |_ `  a
)  +  1 )  e.  ZZ )
121120, 117ifcld 3923 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  ZZ )
122117zred 11037 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  M  e.  RR )
123120zred 11037 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  (
( |_ `  a
)  +  1 )  e.  RR )
124 max1 11477 . . . . . . . . . . . 12  |-  ( ( M  e.  RR  /\  ( ( |_ `  a )  +  1 )  e.  RR )  ->  M  <_  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M ) )
125122, 123, 124syl2anc 666 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  M  <_  if ( M  <_ 
( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M ) )
126 eluz2 11162 . . . . . . . . . . 11  |-  ( if ( M  <_  (
( |_ `  a
)  +  1 ) ,  ( ( |_
`  a )  +  1 ) ,  M
)  e.  ( ZZ>= `  M )  <->  ( M  e.  ZZ  /\  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a
)  +  1 ) ,  M )  e.  ZZ  /\  M  <_  if ( M  <_  (
( |_ `  a
)  +  1 ) ,  ( ( |_
`  a )  +  1 ) ,  M
) ) )
127117, 121, 125, 126syl3anbrc 1191 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  ( ZZ>= `  M
) )
128127, 9syl6eleqr 2539 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  Z )
129 fdm 5731 . . . . . . . . . 10  |-  ( F : Z --> RR  ->  dom 
F  =  Z )
13015, 129syl 17 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  dom  F  =  Z )
131128, 130eleqtrrd 2531 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  dom  F )
132121zred 11037 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  RR )
133 fllep1 12034 . . . . . . . . . . 11  |-  ( a  e.  RR  ->  a  <_  ( ( |_ `  a )  +  1 ) )
134133adantl 468 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  a  <_  ( ( |_ `  a )  +  1 ) )
135 max2 11479 . . . . . . . . . . 11  |-  ( ( M  e.  RR  /\  ( ( |_ `  a )  +  1 )  e.  RR )  ->  ( ( |_
`  a )  +  1 )  <_  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M ) )
136122, 123, 135syl2anc 666 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  (
( |_ `  a
)  +  1 )  <_  if ( M  <_  ( ( |_
`  a )  +  1 ) ,  ( ( |_ `  a
)  +  1 ) ,  M ) )
13733, 123, 132, 134, 136letrd 9789 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  a  <_  if ( M  <_ 
( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M ) )
138 elicopnf 11727 . . . . . . . . . 10  |-  ( a  e.  RR  ->  ( if ( M  <_  (
( |_ `  a
)  +  1 ) ,  ( ( |_
`  a )  +  1 ) ,  M
)  e.  ( a [,) +oo )  <->  ( if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  RR  /\  a  <_  if ( M  <_ 
( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M ) ) ) )
139138adantl 468 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( if ( M  <_  (
( |_ `  a
)  +  1 ) ,  ( ( |_
`  a )  +  1 ) ,  M
)  e.  ( a [,) +oo )  <->  ( if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  RR  /\  a  <_  if ( M  <_ 
( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M ) ) ) )
140132, 137, 139mpbir2and 932 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  ( a [,) +oo ) )
141 inelcm 3818 . . . . . . . 8  |-  ( ( if ( M  <_ 
( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  dom  F  /\  if ( M  <_  ( ( |_
`  a )  +  1 ) ,  ( ( |_ `  a
)  +  1 ) ,  M )  e.  ( a [,) +oo ) )  ->  ( dom  F  i^i  ( a [,) +oo ) )  =/=  (/) )
142131, 140, 141syl2anc 666 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( dom  F  i^i  ( a [,) +oo ) )  =/=  (/) )
143 imadisj 5186 . . . . . . . 8  |-  ( ( F " ( a [,) +oo ) )  =  (/)  <->  ( dom  F  i^i  ( a [,) +oo ) )  =  (/) )
144143necon3bii 2675 . . . . . . 7  |-  ( ( F " ( a [,) +oo ) )  =/=  (/)  <->  ( dom  F  i^i  ( a [,) +oo ) )  =/=  (/) )
145142, 144sylibr 216 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( F " ( a [,) +oo ) )  =/=  (/) )
146115, 145eqnetrd 2690 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  (
( F " (
a [,) +oo )
)  i^i  RR* )  =/=  (/) )
147 supxrre1 11613 . . . . 5  |-  ( ( ( ( F "
( a [,) +oo ) )  i^i  RR* )  C_  RR  /\  (
( F " (
a [,) +oo )
)  i^i  RR* )  =/=  (/) )  ->  ( sup ( ( ( F
" ( a [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  RR  <->  sup (
( ( F "
( a [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  < +oo ) )
148116, 146, 147syl2anc 666 . . . 4  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( sup ( ( ( F
" ( a [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  RR  <->  sup (
( ( F "
( a [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  < +oo ) )
149108, 148mpbird 236 . . 3  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  sup ( ( ( F
" ( a [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  RR )
1507, 149eqeltrd 2528 . 2  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( G `  a )  e.  RR )
1513, 5, 150fmpt2d 6051 1  |-  ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  ->  G : RR --> RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 984    = wceq 1443    e. wcel 1886    =/= wne 2621   A.wral 2736   E.wrex 2737   _Vcvv 3044    i^i cin 3402    C_ wss 3403   (/)c0 3730   ifcif 3880   class class class wbr 4401    |-> cmpt 4460   dom cdm 4833   ran crn 4834   "cima 4836   -->wf 5577   ` cfv 5581  (class class class)co 6288   Fincfn 7566   supcsup 7951   RRcr 9535   1c1 9537    + caddc 9539   +oocpnf 9669   RR*cxr 9671    < clt 9672    <_ cle 9673   ZZcz 10934   ZZ>=cuz 11156   [,)cico 11634   ...cfz 11781   |_cfl 12023   limsupclsp 13517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-cnex 9592  ax-resscn 9593  ax-1cn 9594  ax-icn 9595  ax-addcl 9596  ax-addrcl 9597  ax-mulcl 9598  ax-mulrcl 9599  ax-mulcom 9600  ax-addass 9601  ax-mulass 9602  ax-distr 9603  ax-i2m1 9604  ax-1ne0 9605  ax-1rid 9606  ax-rnegex 9607  ax-rrecex 9608  ax-cnre 9609  ax-pre-lttri 9610  ax-pre-lttrn 9611  ax-pre-ltadd 9612  ax-pre-mulgt0 9613  ax-pre-sup 9614
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-int 4234  df-iun 4279  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6250  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-om 6690  df-1st 6790  df-2nd 6791  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-1o 7179  df-oadd 7183  df-er 7360  df-en 7567  df-dom 7568  df-sdom 7569  df-fin 7570  df-sup 7953  df-inf 7954  df-pnf 9674  df-mnf 9675  df-xr 9676  df-ltxr 9677  df-le 9678  df-sub 9859  df-neg 9860  df-nn 10607  df-n0 10867  df-z 10935  df-uz 11157  df-ico 11638  df-fz 11782  df-fl 12025  df-limsup 13519
This theorem is referenced by:  mbflimsup  22616
  Copyright terms: Public domain W3C validator