MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupgre Structured version   Visualization version   Unicode version

Theorem limsupgre 13619
Description: If a sequence of real numbers has upper bounded limit supremum, then all the partial suprema are real. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
limsupval.1  |-  G  =  ( k  e.  RR  |->  sup ( ( ( F
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
limsupgre.z  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
limsupgre  |-  ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  ->  G : RR --> RR )
Distinct variable groups:    k, F    k, M    k, Z
Allowed substitution hint:    G( k)

Proof of Theorem limsupgre
Dummy variables  a 
i  m  n  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltso 11463 . . . 4  |-  <  Or  RR*
21supex 7995 . . 3  |-  sup (
( ( F "
( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  _V
32a1i 11 . 2  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  k  e.  RR )  ->  sup ( ( ( F
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  _V )
4 limsupval.1 . . 3  |-  G  =  ( k  e.  RR  |->  sup ( ( ( F
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
54a1i 11 . 2  |-  ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  ->  G  =  ( k  e.  RR  |->  sup ( ( ( F " ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) )
64limsupgval 13611 . . . 4  |-  ( a  e.  RR  ->  ( G `  a )  =  sup ( ( ( F " ( a [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
76adantl 473 . . 3  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( G `  a )  =  sup ( ( ( F " ( a [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
8 simpl3 1035 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( limsup `
 F )  < +oo )
9 limsupgre.z . . . . . . . . . . 11  |-  Z  =  ( ZZ>= `  M )
10 uzssz 11202 . . . . . . . . . . 11  |-  ( ZZ>= `  M )  C_  ZZ
119, 10eqsstri 3448 . . . . . . . . . 10  |-  Z  C_  ZZ
12 zssre 10968 . . . . . . . . . 10  |-  ZZ  C_  RR
1311, 12sstri 3427 . . . . . . . . 9  |-  Z  C_  RR
1413a1i 11 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  Z  C_  RR )
15 simpl2 1034 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  F : Z --> RR )
16 ressxr 9702 . . . . . . . . 9  |-  RR  C_  RR*
17 fss 5749 . . . . . . . . 9  |-  ( ( F : Z --> RR  /\  RR  C_  RR* )  ->  F : Z --> RR* )
1815, 16, 17sylancl 675 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  F : Z --> RR* )
19 pnfxr 11435 . . . . . . . . 9  |- +oo  e.  RR*
2019a1i 11 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  -> +oo  e.  RR* )
214limsuplt 13615 . . . . . . . 8  |-  ( ( Z  C_  RR  /\  F : Z --> RR*  /\ +oo  e.  RR* )  ->  ( ( limsup `
 F )  < +oo 
<->  E. n  e.  RR  ( G `  n )  < +oo ) )
2214, 18, 20, 21syl3anc 1292 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  (
( limsup `  F )  < +oo  <->  E. n  e.  RR  ( G `  n )  < +oo ) )
238, 22mpbid 215 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  E. n  e.  RR  ( G `  n )  < +oo )
24 fzfi 12223 . . . . . . . 8  |-  ( M ... ( |_ `  n ) )  e. 
Fin
2515adantr 472 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  F : Z
--> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  ( n  e.  RR  /\  ( G `
 n )  < +oo ) )  ->  F : Z --> RR )
26 elfzuz 11822 . . . . . . . . . . 11  |-  ( m  e.  ( M ... ( |_ `  n ) )  ->  m  e.  ( ZZ>= `  M )
)
2726, 9syl6eleqr 2560 . . . . . . . . . 10  |-  ( m  e.  ( M ... ( |_ `  n ) )  ->  m  e.  Z )
28 ffvelrn 6035 . . . . . . . . . 10  |-  ( ( F : Z --> RR  /\  m  e.  Z )  ->  ( F `  m
)  e.  RR )
2925, 27, 28syl2an 485 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  m  e.  ( M ... ( |_ `  n
) ) )  -> 
( F `  m
)  e.  RR )
3029ralrimiva 2809 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  F : Z
--> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  ( n  e.  RR  /\  ( G `
 n )  < +oo ) )  ->  A. m  e.  ( M ... ( |_ `  n ) ) ( F `  m
)  e.  RR )
31 fimaxre3 10575 . . . . . . . 8  |-  ( ( ( M ... ( |_ `  n ) )  e.  Fin  /\  A. m  e.  ( M ... ( |_ `  n
) ) ( F `
 m )  e.  RR )  ->  E. r  e.  RR  A. m  e.  ( M ... ( |_ `  n ) ) ( F `  m
)  <_  r )
3224, 30, 31sylancr 676 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  F : Z
--> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  ( n  e.  RR  /\  ( G `
 n )  < +oo ) )  ->  E. r  e.  RR  A. m  e.  ( M ... ( |_ `  n ) ) ( F `  m
)  <_  r )
33 simpr 468 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  a  e.  RR )
3433ad2antrr 740 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  a  e.  RR )
354limsupgf 13610 . . . . . . . . . 10  |-  G : RR
--> RR*
3635ffvelrni 6036 . . . . . . . . 9  |-  ( a  e.  RR  ->  ( G `  a )  e.  RR* )
3734, 36syl 17 . . . . . . . 8  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( G `  a )  e.  RR* )
38 simprl 772 . . . . . . . . . 10  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  r  e.  RR )
3916, 38sseldi 3416 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  r  e.  RR* )
40 simprl 772 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  F : Z
--> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  ( n  e.  RR  /\  ( G `
 n )  < +oo ) )  ->  n  e.  RR )
4140adantr 472 . . . . . . . . . 10  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  n  e.  RR )
4235ffvelrni 6036 . . . . . . . . . 10  |-  ( n  e.  RR  ->  ( G `  n )  e.  RR* )
4341, 42syl 17 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( G `  n )  e.  RR* )
4439, 43ifcld 3915 . . . . . . . 8  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  if (
( G `  n
)  <_  r , 
r ,  ( G `
 n ) )  e.  RR* )
4519a1i 11 . . . . . . . 8  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  -> +oo  e.  RR* )
4640ad2antrr 740 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  n  e.  RR )
4713a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  Z  C_  RR )
4847sselda 3418 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  i  e.  RR )
49 xrleid 11472 . . . . . . . . . . . . . . . . 17  |-  ( ( G `  n )  e.  RR*  ->  ( G `
 n )  <_ 
( G `  n
) )
5043, 49syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( G `  n )  <_  ( G `  n )
)
5118ad2antrr 740 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  F : Z
--> RR* )
524limsupgle 13612 . . . . . . . . . . . . . . . . 17  |-  ( ( ( Z  C_  RR  /\  F : Z --> RR* )  /\  n  e.  RR  /\  ( G `  n
)  e.  RR* )  ->  ( ( G `  n )  <_  ( G `  n )  <->  A. i  e.  Z  ( n  <_  i  ->  ( F `  i )  <_  ( G `  n ) ) ) )
5347, 51, 41, 43, 52syl211anc 1298 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( ( G `  n )  <_  ( G `  n
)  <->  A. i  e.  Z  ( n  <_  i  -> 
( F `  i
)  <_  ( G `  n ) ) ) )
5450, 53mpbid 215 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  A. i  e.  Z  ( n  <_  i  ->  ( F `  i )  <_  ( G `  n )
) )
5554r19.21bi 2776 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
n  <_  i  ->  ( F `  i )  <_  ( G `  n ) ) )
5655imp 436 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  n  <_  i )  ->  ( F `  i )  <_  ( G `  n
) )
5746, 42syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  ( G `  n )  e.  RR* )
5839adantr 472 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  r  e.  RR* )
59 xrmax1 11493 . . . . . . . . . . . . . . . 16  |-  ( ( ( G `  n
)  e.  RR*  /\  r  e.  RR* )  ->  ( G `  n )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
6057, 58, 59syl2anc 673 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  ( G `  n )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
6151ffvelrnda 6037 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  ( F `  i )  e.  RR* )
6244adantr 472 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  e.  RR* )
63 xrletr 11478 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  i
)  e.  RR*  /\  ( G `  n )  e.  RR*  /\  if ( ( G `  n
)  <_  r , 
r ,  ( G `
 n ) )  e.  RR* )  ->  (
( ( F `  i )  <_  ( G `  n )  /\  ( G `  n
)  <_  if (
( G `  n
)  <_  r , 
r ,  ( G `
 n ) ) )  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
6461, 57, 62, 63syl3anc 1292 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
( ( F `  i )  <_  ( G `  n )  /\  ( G `  n
)  <_  if (
( G `  n
)  <_  r , 
r ,  ( G `
 n ) ) )  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
6560, 64mpan2d 688 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
( F `  i
)  <_  ( G `  n )  ->  ( F `  i )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) ) )
6665adantr 472 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  n  <_  i )  ->  (
( F `  i
)  <_  ( G `  n )  ->  ( F `  i )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) ) )
6756, 66mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  n  <_  i )  ->  ( F `  i )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
68 simpr 468 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  i  e.  Z )
6968, 9syl6eleq 2559 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  i  e.  ( ZZ>= `  M )
)
7041flcld 12067 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( |_ `  n )  e.  ZZ )
7170adantr 472 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  ( |_ `  n )  e.  ZZ )
72 elfz5 11818 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( ZZ>= `  M )  /\  ( |_ `  n )  e.  ZZ )  ->  (
i  e.  ( M ... ( |_ `  n ) )  <->  i  <_  ( |_ `  n ) ) )
7369, 71, 72syl2anc 673 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
i  e.  ( M ... ( |_ `  n ) )  <->  i  <_  ( |_ `  n ) ) )
7411, 68sseldi 3416 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  i  e.  ZZ )
75 flge 12074 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  RR  /\  i  e.  ZZ )  ->  ( i  <_  n  <->  i  <_  ( |_ `  n ) ) )
7646, 74, 75syl2anc 673 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
i  <_  n  <->  i  <_  ( |_ `  n ) ) )
7773, 76bitr4d 264 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
i  e.  ( M ... ( |_ `  n ) )  <->  i  <_  n ) )
7877biimpar 493 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  i  <_  n )  ->  i  e.  ( M ... ( |_ `  n ) ) )
79 simprr 774 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  A. m  e.  ( M ... ( |_ `  n ) ) ( F `  m
)  <_  r )
8079ad2antrr 740 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  i  <_  n )  ->  A. m  e.  ( M ... ( |_ `  n ) ) ( F `  m
)  <_  r )
81 fveq2 5879 . . . . . . . . . . . . . . . 16  |-  ( m  =  i  ->  ( F `  m )  =  ( F `  i ) )
8281breq1d 4405 . . . . . . . . . . . . . . 15  |-  ( m  =  i  ->  (
( F `  m
)  <_  r  <->  ( F `  i )  <_  r
) )
8382rspcv 3132 . . . . . . . . . . . . . 14  |-  ( i  e.  ( M ... ( |_ `  n ) )  ->  ( A. m  e.  ( M ... ( |_ `  n
) ) ( F `
 m )  <_ 
r  ->  ( F `  i )  <_  r
) )
8478, 80, 83sylc 61 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  i  <_  n )  ->  ( F `  i )  <_  r )
85 xrmax2 11494 . . . . . . . . . . . . . . . . 17  |-  ( ( ( G `  n
)  e.  RR*  /\  r  e.  RR* )  ->  r  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
8643, 39, 85syl2anc 673 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  r  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) )
8786adantr 472 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  r  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
88 xrletr 11478 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  i
)  e.  RR*  /\  r  e.  RR*  /\  if ( ( G `  n
)  <_  r , 
r ,  ( G `
 n ) )  e.  RR* )  ->  (
( ( F `  i )  <_  r  /\  r  <_  if ( ( G `  n
)  <_  r , 
r ,  ( G `
 n ) ) )  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
8961, 58, 62, 88syl3anc 1292 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
( ( F `  i )  <_  r  /\  r  <_  if ( ( G `  n
)  <_  r , 
r ,  ( G `
 n ) ) )  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
9087, 89mpan2d 688 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
( F `  i
)  <_  r  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
9190adantr 472 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  i  <_  n )  ->  (
( F `  i
)  <_  r  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
9284, 91mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  i  <_  n )  ->  ( F `  i )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
9346, 48, 67, 92lecasei 9758 . . . . . . . . . . 11  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  ( F `  i )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
9493a1d 25 . . . . . . . . . 10  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
a  <_  i  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
9594ralrimiva 2809 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  A. i  e.  Z  ( a  <_  i  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
964limsupgle 13612 . . . . . . . . . 10  |-  ( ( ( Z  C_  RR  /\  F : Z --> RR* )  /\  a  e.  RR  /\  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) )  e.  RR* )  ->  ( ( G `
 a )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  <->  A. i  e.  Z  ( a  <_  i  ->  ( F `  i
)  <_  if (
( G `  n
)  <_  r , 
r ,  ( G `
 n ) ) ) ) )
9747, 51, 34, 44, 96syl211anc 1298 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( ( G `  a )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) )  <->  A. i  e.  Z  ( a  <_  i  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) ) )
9895, 97mpbird 240 . . . . . . . 8  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( G `  a )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) )
9938ltpnfd 11446 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  r  < +oo )
100 simplrr 779 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( G `  n )  < +oo )
101 breq1 4398 . . . . . . . . . 10  |-  ( r  =  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  -> 
( r  < +oo  <->  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  < +oo )
)
102 breq1 4398 . . . . . . . . . 10  |-  ( ( G `  n )  =  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  -> 
( ( G `  n )  < +oo  <->  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  < +oo )
)
103101, 102ifboth 3908 . . . . . . . . 9  |-  ( ( r  < +oo  /\  ( G `  n )  < +oo )  ->  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  < +oo )
10499, 100, 103syl2anc 673 . . . . . . . 8  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  if (
( G `  n
)  <_  r , 
r ,  ( G `
 n ) )  < +oo )
10537, 44, 45, 98, 104xrlelttrd 11480 . . . . . . 7  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( G `  a )  < +oo )
10632, 105rexlimddv 2875 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  F : Z
--> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  ( n  e.  RR  /\  ( G `
 n )  < +oo ) )  ->  ( G `  a )  < +oo )
10723, 106rexlimddv 2875 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( G `  a )  < +oo )
1087, 107eqbrtrrd 4418 . . . 4  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  sup ( ( ( F
" ( a [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  < +oo )
109 imassrn 5185 . . . . . . . . 9  |-  ( F
" ( a [,) +oo ) )  C_  ran  F
110 frn 5747 . . . . . . . . . 10  |-  ( F : Z --> RR  ->  ran 
F  C_  RR )
11115, 110syl 17 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ran  F 
C_  RR )
112109, 111syl5ss 3429 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( F " ( a [,) +oo ) )  C_  RR )
113112, 16syl6ss 3430 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( F " ( a [,) +oo ) )  C_  RR* )
114 df-ss 3404 . . . . . . 7  |-  ( ( F " ( a [,) +oo ) ) 
C_  RR*  <->  ( ( F
" ( a [,) +oo ) )  i^i  RR* )  =  ( F " ( a [,) +oo ) ) )
115113, 114sylib 201 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  (
( F " (
a [,) +oo )
)  i^i  RR* )  =  ( F " (
a [,) +oo )
) )
116115, 112eqsstrd 3452 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  (
( F " (
a [,) +oo )
)  i^i  RR* )  C_  RR )
117 simpl1 1033 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  M  e.  ZZ )
118 flcl 12064 . . . . . . . . . . . . . 14  |-  ( a  e.  RR  ->  ( |_ `  a )  e.  ZZ )
119118adantl 473 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( |_ `  a )  e.  ZZ )
120119peano2zd 11066 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  (
( |_ `  a
)  +  1 )  e.  ZZ )
121120, 117ifcld 3915 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  ZZ )
122117zred 11063 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  M  e.  RR )
123120zred 11063 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  (
( |_ `  a
)  +  1 )  e.  RR )
124 max1 11503 . . . . . . . . . . . 12  |-  ( ( M  e.  RR  /\  ( ( |_ `  a )  +  1 )  e.  RR )  ->  M  <_  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M ) )
125122, 123, 124syl2anc 673 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  M  <_  if ( M  <_ 
( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M ) )
126 eluz2 11188 . . . . . . . . . . 11  |-  ( if ( M  <_  (
( |_ `  a
)  +  1 ) ,  ( ( |_
`  a )  +  1 ) ,  M
)  e.  ( ZZ>= `  M )  <->  ( M  e.  ZZ  /\  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a
)  +  1 ) ,  M )  e.  ZZ  /\  M  <_  if ( M  <_  (
( |_ `  a
)  +  1 ) ,  ( ( |_
`  a )  +  1 ) ,  M
) ) )
127117, 121, 125, 126syl3anbrc 1214 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  ( ZZ>= `  M
) )
128127, 9syl6eleqr 2560 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  Z )
129 fdm 5745 . . . . . . . . . 10  |-  ( F : Z --> RR  ->  dom 
F  =  Z )
13015, 129syl 17 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  dom  F  =  Z )
131128, 130eleqtrrd 2552 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  dom  F )
132121zred 11063 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  RR )
133 fllep1 12070 . . . . . . . . . . 11  |-  ( a  e.  RR  ->  a  <_  ( ( |_ `  a )  +  1 ) )
134133adantl 473 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  a  <_  ( ( |_ `  a )  +  1 ) )
135 max2 11505 . . . . . . . . . . 11  |-  ( ( M  e.  RR  /\  ( ( |_ `  a )  +  1 )  e.  RR )  ->  ( ( |_
`  a )  +  1 )  <_  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M ) )
136122, 123, 135syl2anc 673 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  (
( |_ `  a
)  +  1 )  <_  if ( M  <_  ( ( |_
`  a )  +  1 ) ,  ( ( |_ `  a
)  +  1 ) ,  M ) )
13733, 123, 132, 134, 136letrd 9809 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  a  <_  if ( M  <_ 
( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M ) )
138 elicopnf 11755 . . . . . . . . . 10  |-  ( a  e.  RR  ->  ( if ( M  <_  (
( |_ `  a
)  +  1 ) ,  ( ( |_
`  a )  +  1 ) ,  M
)  e.  ( a [,) +oo )  <->  ( if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  RR  /\  a  <_  if ( M  <_ 
( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M ) ) ) )
139138adantl 473 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( if ( M  <_  (
( |_ `  a
)  +  1 ) ,  ( ( |_
`  a )  +  1 ) ,  M
)  e.  ( a [,) +oo )  <->  ( if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  RR  /\  a  <_  if ( M  <_ 
( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M ) ) ) )
140132, 137, 139mpbir2and 936 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  ( a [,) +oo ) )
141 inelcm 3823 . . . . . . . 8  |-  ( ( if ( M  <_ 
( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  dom  F  /\  if ( M  <_  ( ( |_
`  a )  +  1 ) ,  ( ( |_ `  a
)  +  1 ) ,  M )  e.  ( a [,) +oo ) )  ->  ( dom  F  i^i  ( a [,) +oo ) )  =/=  (/) )
142131, 140, 141syl2anc 673 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( dom  F  i^i  ( a [,) +oo ) )  =/=  (/) )
143 imadisj 5193 . . . . . . . 8  |-  ( ( F " ( a [,) +oo ) )  =  (/)  <->  ( dom  F  i^i  ( a [,) +oo ) )  =  (/) )
144143necon3bii 2695 . . . . . . 7  |-  ( ( F " ( a [,) +oo ) )  =/=  (/)  <->  ( dom  F  i^i  ( a [,) +oo ) )  =/=  (/) )
145142, 144sylibr 217 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( F " ( a [,) +oo ) )  =/=  (/) )
146115, 145eqnetrd 2710 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  (
( F " (
a [,) +oo )
)  i^i  RR* )  =/=  (/) )
147 supxrre1 11641 . . . . 5  |-  ( ( ( ( F "
( a [,) +oo ) )  i^i  RR* )  C_  RR  /\  (
( F " (
a [,) +oo )
)  i^i  RR* )  =/=  (/) )  ->  ( sup ( ( ( F
" ( a [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  RR  <->  sup (
( ( F "
( a [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  < +oo ) )
148116, 146, 147syl2anc 673 . . . 4  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( sup ( ( ( F
" ( a [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  RR  <->  sup (
( ( F "
( a [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  < +oo ) )
149108, 148mpbird 240 . . 3  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  sup ( ( ( F
" ( a [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  RR )
1507, 149eqeltrd 2549 . 2  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( G `  a )  e.  RR )
1513, 5, 150fmpt2d 6069 1  |-  ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  ->  G : RR --> RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904    =/= wne 2641   A.wral 2756   E.wrex 2757   _Vcvv 3031    i^i cin 3389    C_ wss 3390   (/)c0 3722   ifcif 3872   class class class wbr 4395    |-> cmpt 4454   dom cdm 4839   ran crn 4840   "cima 4842   -->wf 5585   ` cfv 5589  (class class class)co 6308   Fincfn 7587   supcsup 7972   RRcr 9556   1c1 9558    + caddc 9560   +oocpnf 9690   RR*cxr 9692    < clt 9693    <_ cle 9694   ZZcz 10961   ZZ>=cuz 11182   [,)cico 11662   ...cfz 11810   |_cfl 12059   limsupclsp 13601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-inf 7975  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-n0 10894  df-z 10962  df-uz 11183  df-ico 11666  df-fz 11811  df-fl 12061  df-limsup 13603
This theorem is referenced by:  mbflimsup  22702
  Copyright terms: Public domain W3C validator