MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupgre Structured version   Unicode version

Theorem limsupgre 12943
Description: If a sequence of real numbers has upper bounded limit supremum, then all the partial suprema are real. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
limsupval.1  |-  G  =  ( k  e.  RR  |->  sup ( ( ( F
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
limsupgre.z  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
limsupgre  |-  ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  ->  G : RR --> RR )
Distinct variable groups:    k, F    k, M    k, Z
Allowed substitution hint:    G( k)

Proof of Theorem limsupgre
Dummy variables  n  i  a  m  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltso 11106 . . . 4  |-  <  Or  RR*
21supex 7701 . . 3  |-  sup (
( ( F "
( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  _V
32a1i 11 . 2  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  k  e.  RR )  ->  sup ( ( ( F
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  _V )
4 limsupval.1 . . 3  |-  G  =  ( k  e.  RR  |->  sup ( ( ( F
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
54a1i 11 . 2  |-  ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  ->  G  =  ( k  e.  RR  |->  sup ( ( ( F " ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) )
64limsupgval 12938 . . . 4  |-  ( a  e.  RR  ->  ( G `  a )  =  sup ( ( ( F " ( a [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
76adantl 463 . . 3  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( G `  a )  =  sup ( ( ( F " ( a [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
8 simpl3 986 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( limsup `
 F )  < +oo )
9 limsupgre.z . . . . . . . . . . 11  |-  Z  =  ( ZZ>= `  M )
10 uzssz 10868 . . . . . . . . . . 11  |-  ( ZZ>= `  M )  C_  ZZ
119, 10eqsstri 3374 . . . . . . . . . 10  |-  Z  C_  ZZ
12 zssre 10641 . . . . . . . . . 10  |-  ZZ  C_  RR
1311, 12sstri 3353 . . . . . . . . 9  |-  Z  C_  RR
1413a1i 11 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  Z  C_  RR )
15 simpl2 985 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  F : Z --> RR )
16 ressxr 9415 . . . . . . . . 9  |-  RR  C_  RR*
17 fss 5555 . . . . . . . . 9  |-  ( ( F : Z --> RR  /\  RR  C_  RR* )  ->  F : Z --> RR* )
1815, 16, 17sylancl 655 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  F : Z --> RR* )
19 pnfxr 11080 . . . . . . . . 9  |- +oo  e.  RR*
2019a1i 11 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  -> +oo  e.  RR* )
214limsuplt 12941 . . . . . . . 8  |-  ( ( Z  C_  RR  /\  F : Z --> RR*  /\ +oo  e.  RR* )  ->  ( ( limsup `
 F )  < +oo 
<->  E. n  e.  RR  ( G `  n )  < +oo ) )
2214, 18, 20, 21syl3anc 1211 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  (
( limsup `  F )  < +oo  <->  E. n  e.  RR  ( G `  n )  < +oo ) )
238, 22mpbid 210 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  E. n  e.  RR  ( G `  n )  < +oo )
24 fzfi 11778 . . . . . . . 8  |-  ( M ... ( |_ `  n ) )  e. 
Fin
2515adantr 462 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  F : Z
--> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  ( n  e.  RR  /\  ( G `
 n )  < +oo ) )  ->  F : Z --> RR )
26 elfzuz 11436 . . . . . . . . . . 11  |-  ( m  e.  ( M ... ( |_ `  n ) )  ->  m  e.  ( ZZ>= `  M )
)
2726, 9syl6eleqr 2524 . . . . . . . . . 10  |-  ( m  e.  ( M ... ( |_ `  n ) )  ->  m  e.  Z )
28 ffvelrn 5829 . . . . . . . . . 10  |-  ( ( F : Z --> RR  /\  m  e.  Z )  ->  ( F `  m
)  e.  RR )
2925, 27, 28syl2an 474 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  m  e.  ( M ... ( |_ `  n
) ) )  -> 
( F `  m
)  e.  RR )
3029ralrimiva 2789 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  F : Z
--> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  ( n  e.  RR  /\  ( G `
 n )  < +oo ) )  ->  A. m  e.  ( M ... ( |_ `  n ) ) ( F `  m
)  e.  RR )
31 fimaxre3 10267 . . . . . . . 8  |-  ( ( ( M ... ( |_ `  n ) )  e.  Fin  /\  A. m  e.  ( M ... ( |_ `  n
) ) ( F `
 m )  e.  RR )  ->  E. r  e.  RR  A. m  e.  ( M ... ( |_ `  n ) ) ( F `  m
)  <_  r )
3224, 30, 31sylancr 656 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  F : Z
--> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  ( n  e.  RR  /\  ( G `
 n )  < +oo ) )  ->  E. r  e.  RR  A. m  e.  ( M ... ( |_ `  n ) ) ( F `  m
)  <_  r )
33 simpr 458 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  a  e.  RR )
3433ad2antrr 718 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  a  e.  RR )
354limsupgf 12937 . . . . . . . . . 10  |-  G : RR
--> RR*
3635ffvelrni 5830 . . . . . . . . 9  |-  ( a  e.  RR  ->  ( G `  a )  e.  RR* )
3734, 36syl 16 . . . . . . . 8  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( G `  a )  e.  RR* )
38 simprl 748 . . . . . . . . . 10  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  r  e.  RR )
3916, 38sseldi 3342 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  r  e.  RR* )
40 simprl 748 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  F : Z
--> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  ( n  e.  RR  /\  ( G `
 n )  < +oo ) )  ->  n  e.  RR )
4140adantr 462 . . . . . . . . . 10  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  n  e.  RR )
4235ffvelrni 5830 . . . . . . . . . 10  |-  ( n  e.  RR  ->  ( G `  n )  e.  RR* )
4341, 42syl 16 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( G `  n )  e.  RR* )
44 ifcl 3819 . . . . . . . . 9  |-  ( ( r  e.  RR*  /\  ( G `  n )  e.  RR* )  ->  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  e.  RR* )
4539, 43, 44syl2anc 654 . . . . . . . 8  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  if (
( G `  n
)  <_  r , 
r ,  ( G `
 n ) )  e.  RR* )
4619a1i 11 . . . . . . . 8  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  -> +oo  e.  RR* )
4740ad2antrr 718 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  n  e.  RR )
4813a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  Z  C_  RR )
4948sselda 3344 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  i  e.  RR )
50 xrleid 11115 . . . . . . . . . . . . . . . . 17  |-  ( ( G `  n )  e.  RR*  ->  ( G `
 n )  <_ 
( G `  n
) )
5143, 50syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( G `  n )  <_  ( G `  n )
)
5218ad2antrr 718 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  F : Z
--> RR* )
534limsupgle 12939 . . . . . . . . . . . . . . . . 17  |-  ( ( ( Z  C_  RR  /\  F : Z --> RR* )  /\  n  e.  RR  /\  ( G `  n
)  e.  RR* )  ->  ( ( G `  n )  <_  ( G `  n )  <->  A. i  e.  Z  ( n  <_  i  ->  ( F `  i )  <_  ( G `  n ) ) ) )
5448, 52, 41, 43, 53syl211anc 1217 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( ( G `  n )  <_  ( G `  n
)  <->  A. i  e.  Z  ( n  <_  i  -> 
( F `  i
)  <_  ( G `  n ) ) ) )
5551, 54mpbid 210 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  A. i  e.  Z  ( n  <_  i  ->  ( F `  i )  <_  ( G `  n )
) )
5655r19.21bi 2804 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
n  <_  i  ->  ( F `  i )  <_  ( G `  n ) ) )
5756imp 429 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  n  <_  i )  ->  ( F `  i )  <_  ( G `  n
) )
5847, 42syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  ( G `  n )  e.  RR* )
5939adantr 462 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  r  e.  RR* )
60 xrmax1 11135 . . . . . . . . . . . . . . . 16  |-  ( ( ( G `  n
)  e.  RR*  /\  r  e.  RR* )  ->  ( G `  n )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
6158, 59, 60syl2anc 654 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  ( G `  n )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
6252ffvelrnda 5831 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  ( F `  i )  e.  RR* )
6345adantr 462 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  e.  RR* )
64 xrletr 11120 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  i
)  e.  RR*  /\  ( G `  n )  e.  RR*  /\  if ( ( G `  n
)  <_  r , 
r ,  ( G `
 n ) )  e.  RR* )  ->  (
( ( F `  i )  <_  ( G `  n )  /\  ( G `  n
)  <_  if (
( G `  n
)  <_  r , 
r ,  ( G `
 n ) ) )  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
6562, 58, 63, 64syl3anc 1211 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
( ( F `  i )  <_  ( G `  n )  /\  ( G `  n
)  <_  if (
( G `  n
)  <_  r , 
r ,  ( G `
 n ) ) )  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
6661, 65mpan2d 667 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
( F `  i
)  <_  ( G `  n )  ->  ( F `  i )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) ) )
6766adantr 462 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  n  <_  i )  ->  (
( F `  i
)  <_  ( G `  n )  ->  ( F `  i )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) ) )
6857, 67mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  n  <_  i )  ->  ( F `  i )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
69 simpr 458 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  i  e.  Z )
7069, 9syl6eleq 2523 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  i  e.  ( ZZ>= `  M )
)
7141flcld 11632 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( |_ `  n )  e.  ZZ )
7271adantr 462 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  ( |_ `  n )  e.  ZZ )
73 elfz5 11432 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( ZZ>= `  M )  /\  ( |_ `  n )  e.  ZZ )  ->  (
i  e.  ( M ... ( |_ `  n ) )  <->  i  <_  ( |_ `  n ) ) )
7470, 72, 73syl2anc 654 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
i  e.  ( M ... ( |_ `  n ) )  <->  i  <_  ( |_ `  n ) ) )
7511, 69sseldi 3342 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  i  e.  ZZ )
76 flge 11639 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  RR  /\  i  e.  ZZ )  ->  ( i  <_  n  <->  i  <_  ( |_ `  n ) ) )
7747, 75, 76syl2anc 654 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
i  <_  n  <->  i  <_  ( |_ `  n ) ) )
7874, 77bitr4d 256 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
i  e.  ( M ... ( |_ `  n ) )  <->  i  <_  n ) )
7978biimpar 482 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  i  <_  n )  ->  i  e.  ( M ... ( |_ `  n ) ) )
80 simprr 749 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  A. m  e.  ( M ... ( |_ `  n ) ) ( F `  m
)  <_  r )
8180ad2antrr 718 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  i  <_  n )  ->  A. m  e.  ( M ... ( |_ `  n ) ) ( F `  m
)  <_  r )
82 fveq2 5679 . . . . . . . . . . . . . . . 16  |-  ( m  =  i  ->  ( F `  m )  =  ( F `  i ) )
8382breq1d 4290 . . . . . . . . . . . . . . 15  |-  ( m  =  i  ->  (
( F `  m
)  <_  r  <->  ( F `  i )  <_  r
) )
8483rspcv 3058 . . . . . . . . . . . . . 14  |-  ( i  e.  ( M ... ( |_ `  n ) )  ->  ( A. m  e.  ( M ... ( |_ `  n
) ) ( F `
 m )  <_ 
r  ->  ( F `  i )  <_  r
) )
8579, 81, 84sylc 60 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  i  <_  n )  ->  ( F `  i )  <_  r )
86 xrmax2 11136 . . . . . . . . . . . . . . . . 17  |-  ( ( ( G `  n
)  e.  RR*  /\  r  e.  RR* )  ->  r  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
8743, 39, 86syl2anc 654 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  r  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) )
8887adantr 462 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  r  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
89 xrletr 11120 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  i
)  e.  RR*  /\  r  e.  RR*  /\  if ( ( G `  n
)  <_  r , 
r ,  ( G `
 n ) )  e.  RR* )  ->  (
( ( F `  i )  <_  r  /\  r  <_  if ( ( G `  n
)  <_  r , 
r ,  ( G `
 n ) ) )  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
9062, 59, 63, 89syl3anc 1211 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
( ( F `  i )  <_  r  /\  r  <_  if ( ( G `  n
)  <_  r , 
r ,  ( G `
 n ) ) )  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
9188, 90mpan2d 667 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
( F `  i
)  <_  r  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
9291adantr 462 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  i  <_  n )  ->  (
( F `  i
)  <_  r  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
9385, 92mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  i  <_  n )  ->  ( F `  i )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
9447, 49, 68, 93lecasei 9468 . . . . . . . . . . 11  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  ( F `  i )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
9594a1d 25 . . . . . . . . . 10  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
a  <_  i  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
9695ralrimiva 2789 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  A. i  e.  Z  ( a  <_  i  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
974limsupgle 12939 . . . . . . . . . 10  |-  ( ( ( Z  C_  RR  /\  F : Z --> RR* )  /\  a  e.  RR  /\  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) )  e.  RR* )  ->  ( ( G `
 a )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  <->  A. i  e.  Z  ( a  <_  i  ->  ( F `  i
)  <_  if (
( G `  n
)  <_  r , 
r ,  ( G `
 n ) ) ) ) )
9848, 52, 34, 45, 97syl211anc 1217 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( ( G `  a )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) )  <->  A. i  e.  Z  ( a  <_  i  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) ) )
9996, 98mpbird 232 . . . . . . . 8  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( G `  a )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) )
100 ltpnf 11090 . . . . . . . . . 10  |-  ( r  e.  RR  ->  r  < +oo )
10138, 100syl 16 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  r  < +oo )
102 simplrr 753 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( G `  n )  < +oo )
103 breq1 4283 . . . . . . . . . 10  |-  ( r  =  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  -> 
( r  < +oo  <->  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  < +oo )
)
104 breq1 4283 . . . . . . . . . 10  |-  ( ( G `  n )  =  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  -> 
( ( G `  n )  < +oo  <->  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  < +oo )
)
105103, 104ifboth 3813 . . . . . . . . 9  |-  ( ( r  < +oo  /\  ( G `  n )  < +oo )  ->  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  < +oo )
106101, 102, 105syl2anc 654 . . . . . . . 8  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  if (
( G `  n
)  <_  r , 
r ,  ( G `
 n ) )  < +oo )
10737, 45, 46, 99, 106xrlelttrd 11122 . . . . . . 7  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( G `  a )  < +oo )
10832, 107rexlimddv 2835 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  F : Z
--> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  ( n  e.  RR  /\  ( G `
 n )  < +oo ) )  ->  ( G `  a )  < +oo )
10923, 108rexlimddv 2835 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( G `  a )  < +oo )
1107, 109eqbrtrrd 4302 . . . 4  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  sup ( ( ( F
" ( a [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  < +oo )
111 imassrn 5168 . . . . . . . . 9  |-  ( F
" ( a [,) +oo ) )  C_  ran  F
112 frn 5553 . . . . . . . . . 10  |-  ( F : Z --> RR  ->  ran 
F  C_  RR )
11315, 112syl 16 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ran  F 
C_  RR )
114111, 113syl5ss 3355 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( F " ( a [,) +oo ) )  C_  RR )
115114, 16syl6ss 3356 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( F " ( a [,) +oo ) )  C_  RR* )
116 df-ss 3330 . . . . . . 7  |-  ( ( F " ( a [,) +oo ) ) 
C_  RR*  <->  ( ( F
" ( a [,) +oo ) )  i^i  RR* )  =  ( F " ( a [,) +oo ) ) )
117115, 116sylib 196 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  (
( F " (
a [,) +oo )
)  i^i  RR* )  =  ( F " (
a [,) +oo )
) )
118117, 114eqsstrd 3378 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  (
( F " (
a [,) +oo )
)  i^i  RR* )  C_  RR )
119 simpl1 984 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  M  e.  ZZ )
120 flcl 11629 . . . . . . . . . . . . . 14  |-  ( a  e.  RR  ->  ( |_ `  a )  e.  ZZ )
121120adantl 463 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( |_ `  a )  e.  ZZ )
122121peano2zd 10738 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  (
( |_ `  a
)  +  1 )  e.  ZZ )
123 ifcl 3819 . . . . . . . . . . . 12  |-  ( ( ( ( |_ `  a )  +  1 )  e.  ZZ  /\  M  e.  ZZ )  ->  if ( M  <_ 
( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  ZZ )
124122, 119, 123syl2anc 654 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  ZZ )
125119zred 10735 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  M  e.  RR )
126122zred 10735 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  (
( |_ `  a
)  +  1 )  e.  RR )
127 max1 11145 . . . . . . . . . . . 12  |-  ( ( M  e.  RR  /\  ( ( |_ `  a )  +  1 )  e.  RR )  ->  M  <_  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M ) )
128125, 126, 127syl2anc 654 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  M  <_  if ( M  <_ 
( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M ) )
129 eluz2 10855 . . . . . . . . . . 11  |-  ( if ( M  <_  (
( |_ `  a
)  +  1 ) ,  ( ( |_
`  a )  +  1 ) ,  M
)  e.  ( ZZ>= `  M )  <->  ( M  e.  ZZ  /\  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a
)  +  1 ) ,  M )  e.  ZZ  /\  M  <_  if ( M  <_  (
( |_ `  a
)  +  1 ) ,  ( ( |_
`  a )  +  1 ) ,  M
) ) )
130119, 124, 128, 129syl3anbrc 1165 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  ( ZZ>= `  M
) )
131130, 9syl6eleqr 2524 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  Z )
132 fdm 5551 . . . . . . . . . 10  |-  ( F : Z --> RR  ->  dom 
F  =  Z )
13315, 132syl 16 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  dom  F  =  Z )
134131, 133eleqtrrd 2510 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  dom  F )
135124zred 10735 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  RR )
136 fllep1 11635 . . . . . . . . . . 11  |-  ( a  e.  RR  ->  a  <_  ( ( |_ `  a )  +  1 ) )
137136adantl 463 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  a  <_  ( ( |_ `  a )  +  1 ) )
138 max2 11147 . . . . . . . . . . 11  |-  ( ( M  e.  RR  /\  ( ( |_ `  a )  +  1 )  e.  RR )  ->  ( ( |_
`  a )  +  1 )  <_  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M ) )
139125, 126, 138syl2anc 654 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  (
( |_ `  a
)  +  1 )  <_  if ( M  <_  ( ( |_
`  a )  +  1 ) ,  ( ( |_ `  a
)  +  1 ) ,  M ) )
14033, 126, 135, 137, 139letrd 9516 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  a  <_  if ( M  <_ 
( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M ) )
141 elicopnf 11373 . . . . . . . . . 10  |-  ( a  e.  RR  ->  ( if ( M  <_  (
( |_ `  a
)  +  1 ) ,  ( ( |_
`  a )  +  1 ) ,  M
)  e.  ( a [,) +oo )  <->  ( if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  RR  /\  a  <_  if ( M  <_ 
( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M ) ) ) )
142141adantl 463 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( if ( M  <_  (
( |_ `  a
)  +  1 ) ,  ( ( |_
`  a )  +  1 ) ,  M
)  e.  ( a [,) +oo )  <->  ( if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  RR  /\  a  <_  if ( M  <_ 
( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M ) ) ) )
143135, 140, 142mpbir2and 906 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  ( a [,) +oo ) )
144 inelcm 3721 . . . . . . . 8  |-  ( ( if ( M  <_ 
( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  dom  F  /\  if ( M  <_  ( ( |_
`  a )  +  1 ) ,  ( ( |_ `  a
)  +  1 ) ,  M )  e.  ( a [,) +oo ) )  ->  ( dom  F  i^i  ( a [,) +oo ) )  =/=  (/) )
145134, 143, 144syl2anc 654 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( dom  F  i^i  ( a [,) +oo ) )  =/=  (/) )
146 imadisj 5176 . . . . . . . 8  |-  ( ( F " ( a [,) +oo ) )  =  (/)  <->  ( dom  F  i^i  ( a [,) +oo ) )  =  (/) )
147146necon3bii 2630 . . . . . . 7  |-  ( ( F " ( a [,) +oo ) )  =/=  (/)  <->  ( dom  F  i^i  ( a [,) +oo ) )  =/=  (/) )
148145, 147sylibr 212 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( F " ( a [,) +oo ) )  =/=  (/) )
149117, 148eqnetrd 2616 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  (
( F " (
a [,) +oo )
)  i^i  RR* )  =/=  (/) )
150 supxrre1 11281 . . . . 5  |-  ( ( ( ( F "
( a [,) +oo ) )  i^i  RR* )  C_  RR  /\  (
( F " (
a [,) +oo )
)  i^i  RR* )  =/=  (/) )  ->  ( sup ( ( ( F
" ( a [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  RR  <->  sup (
( ( F "
( a [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  < +oo ) )
151118, 149, 150syl2anc 654 . . . 4  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( sup ( ( ( F
" ( a [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  RR  <->  sup (
( ( F "
( a [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  < +oo ) )
152110, 151mpbird 232 . . 3  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  sup ( ( ( F
" ( a [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  RR )
1537, 152eqeltrd 2507 . 2  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( G `  a )  e.  RR )
1543, 5, 153fmpt2d 5860 1  |-  ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  ->  G : RR --> RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755    =/= wne 2596   A.wral 2705   E.wrex 2706   _Vcvv 2962    i^i cin 3315    C_ wss 3316   (/)c0 3625   ifcif 3779   class class class wbr 4280    e. cmpt 4338   dom cdm 4827   ran crn 4828   "cima 4830   -->wf 5402   ` cfv 5406  (class class class)co 6080   Fincfn 7298   supcsup 7678   RRcr 9269   1c1 9271    + caddc 9273   +oocpnf 9403   RR*cxr 9405    < clt 9406    <_ cle 9407   ZZcz 10634   ZZ>=cuz 10849   [,)cico 11290   ...cfz 11424   |_cfl 11624   limsupclsp 12932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-pre-sup 9348
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-sup 7679  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-nn 10311  df-n0 10568  df-z 10635  df-uz 10850  df-ico 11294  df-fz 11425  df-fl 11626  df-limsup 12933
This theorem is referenced by:  mbflimsup  20986
  Copyright terms: Public domain W3C validator