MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupgre Structured version   Unicode version

Theorem limsupgre 13076
Description: If a sequence of real numbers has upper bounded limit supremum, then all the partial suprema are real. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
limsupval.1  |-  G  =  ( k  e.  RR  |->  sup ( ( ( F
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
limsupgre.z  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
limsupgre  |-  ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  ->  G : RR --> RR )
Distinct variable groups:    k, F    k, M    k, Z
Allowed substitution hint:    G( k)

Proof of Theorem limsupgre
Dummy variables  n  i  a  m  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltso 11228 . . . 4  |-  <  Or  RR*
21supex 7823 . . 3  |-  sup (
( ( F "
( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  _V
32a1i 11 . 2  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  k  e.  RR )  ->  sup ( ( ( F
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  _V )
4 limsupval.1 . . 3  |-  G  =  ( k  e.  RR  |->  sup ( ( ( F
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
54a1i 11 . 2  |-  ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  ->  G  =  ( k  e.  RR  |->  sup ( ( ( F " ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) )
64limsupgval 13071 . . . 4  |-  ( a  e.  RR  ->  ( G `  a )  =  sup ( ( ( F " ( a [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
76adantl 466 . . 3  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( G `  a )  =  sup ( ( ( F " ( a [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
8 simpl3 993 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( limsup `
 F )  < +oo )
9 limsupgre.z . . . . . . . . . . 11  |-  Z  =  ( ZZ>= `  M )
10 uzssz 10990 . . . . . . . . . . 11  |-  ( ZZ>= `  M )  C_  ZZ
119, 10eqsstri 3493 . . . . . . . . . 10  |-  Z  C_  ZZ
12 zssre 10763 . . . . . . . . . 10  |-  ZZ  C_  RR
1311, 12sstri 3472 . . . . . . . . 9  |-  Z  C_  RR
1413a1i 11 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  Z  C_  RR )
15 simpl2 992 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  F : Z --> RR )
16 ressxr 9537 . . . . . . . . 9  |-  RR  C_  RR*
17 fss 5674 . . . . . . . . 9  |-  ( ( F : Z --> RR  /\  RR  C_  RR* )  ->  F : Z --> RR* )
1815, 16, 17sylancl 662 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  F : Z --> RR* )
19 pnfxr 11202 . . . . . . . . 9  |- +oo  e.  RR*
2019a1i 11 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  -> +oo  e.  RR* )
214limsuplt 13074 . . . . . . . 8  |-  ( ( Z  C_  RR  /\  F : Z --> RR*  /\ +oo  e.  RR* )  ->  ( ( limsup `
 F )  < +oo 
<->  E. n  e.  RR  ( G `  n )  < +oo ) )
2214, 18, 20, 21syl3anc 1219 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  (
( limsup `  F )  < +oo  <->  E. n  e.  RR  ( G `  n )  < +oo ) )
238, 22mpbid 210 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  E. n  e.  RR  ( G `  n )  < +oo )
24 fzfi 11910 . . . . . . . 8  |-  ( M ... ( |_ `  n ) )  e. 
Fin
2515adantr 465 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  F : Z
--> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  ( n  e.  RR  /\  ( G `
 n )  < +oo ) )  ->  F : Z --> RR )
26 elfzuz 11565 . . . . . . . . . . 11  |-  ( m  e.  ( M ... ( |_ `  n ) )  ->  m  e.  ( ZZ>= `  M )
)
2726, 9syl6eleqr 2553 . . . . . . . . . 10  |-  ( m  e.  ( M ... ( |_ `  n ) )  ->  m  e.  Z )
28 ffvelrn 5949 . . . . . . . . . 10  |-  ( ( F : Z --> RR  /\  m  e.  Z )  ->  ( F `  m
)  e.  RR )
2925, 27, 28syl2an 477 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  m  e.  ( M ... ( |_ `  n
) ) )  -> 
( F `  m
)  e.  RR )
3029ralrimiva 2829 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  F : Z
--> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  ( n  e.  RR  /\  ( G `
 n )  < +oo ) )  ->  A. m  e.  ( M ... ( |_ `  n ) ) ( F `  m
)  e.  RR )
31 fimaxre3 10389 . . . . . . . 8  |-  ( ( ( M ... ( |_ `  n ) )  e.  Fin  /\  A. m  e.  ( M ... ( |_ `  n
) ) ( F `
 m )  e.  RR )  ->  E. r  e.  RR  A. m  e.  ( M ... ( |_ `  n ) ) ( F `  m
)  <_  r )
3224, 30, 31sylancr 663 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  F : Z
--> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  ( n  e.  RR  /\  ( G `
 n )  < +oo ) )  ->  E. r  e.  RR  A. m  e.  ( M ... ( |_ `  n ) ) ( F `  m
)  <_  r )
33 simpr 461 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  a  e.  RR )
3433ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  a  e.  RR )
354limsupgf 13070 . . . . . . . . . 10  |-  G : RR
--> RR*
3635ffvelrni 5950 . . . . . . . . 9  |-  ( a  e.  RR  ->  ( G `  a )  e.  RR* )
3734, 36syl 16 . . . . . . . 8  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( G `  a )  e.  RR* )
38 simprl 755 . . . . . . . . . 10  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  r  e.  RR )
3916, 38sseldi 3461 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  r  e.  RR* )
40 simprl 755 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  F : Z
--> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  ( n  e.  RR  /\  ( G `
 n )  < +oo ) )  ->  n  e.  RR )
4140adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  n  e.  RR )
4235ffvelrni 5950 . . . . . . . . . 10  |-  ( n  e.  RR  ->  ( G `  n )  e.  RR* )
4341, 42syl 16 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( G `  n )  e.  RR* )
44 ifcl 3938 . . . . . . . . 9  |-  ( ( r  e.  RR*  /\  ( G `  n )  e.  RR* )  ->  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  e.  RR* )
4539, 43, 44syl2anc 661 . . . . . . . 8  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  if (
( G `  n
)  <_  r , 
r ,  ( G `
 n ) )  e.  RR* )
4619a1i 11 . . . . . . . 8  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  -> +oo  e.  RR* )
4740ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  n  e.  RR )
4813a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  Z  C_  RR )
4948sselda 3463 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  i  e.  RR )
50 xrleid 11237 . . . . . . . . . . . . . . . . 17  |-  ( ( G `  n )  e.  RR*  ->  ( G `
 n )  <_ 
( G `  n
) )
5143, 50syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( G `  n )  <_  ( G `  n )
)
5218ad2antrr 725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  F : Z
--> RR* )
534limsupgle 13072 . . . . . . . . . . . . . . . . 17  |-  ( ( ( Z  C_  RR  /\  F : Z --> RR* )  /\  n  e.  RR  /\  ( G `  n
)  e.  RR* )  ->  ( ( G `  n )  <_  ( G `  n )  <->  A. i  e.  Z  ( n  <_  i  ->  ( F `  i )  <_  ( G `  n ) ) ) )
5448, 52, 41, 43, 53syl211anc 1225 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( ( G `  n )  <_  ( G `  n
)  <->  A. i  e.  Z  ( n  <_  i  -> 
( F `  i
)  <_  ( G `  n ) ) ) )
5551, 54mpbid 210 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  A. i  e.  Z  ( n  <_  i  ->  ( F `  i )  <_  ( G `  n )
) )
5655r19.21bi 2918 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
n  <_  i  ->  ( F `  i )  <_  ( G `  n ) ) )
5756imp 429 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  n  <_  i )  ->  ( F `  i )  <_  ( G `  n
) )
5847, 42syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  ( G `  n )  e.  RR* )
5939adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  r  e.  RR* )
60 xrmax1 11257 . . . . . . . . . . . . . . . 16  |-  ( ( ( G `  n
)  e.  RR*  /\  r  e.  RR* )  ->  ( G `  n )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
6158, 59, 60syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  ( G `  n )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
6252ffvelrnda 5951 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  ( F `  i )  e.  RR* )
6345adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  e.  RR* )
64 xrletr 11242 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  i
)  e.  RR*  /\  ( G `  n )  e.  RR*  /\  if ( ( G `  n
)  <_  r , 
r ,  ( G `
 n ) )  e.  RR* )  ->  (
( ( F `  i )  <_  ( G `  n )  /\  ( G `  n
)  <_  if (
( G `  n
)  <_  r , 
r ,  ( G `
 n ) ) )  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
6562, 58, 63, 64syl3anc 1219 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
( ( F `  i )  <_  ( G `  n )  /\  ( G `  n
)  <_  if (
( G `  n
)  <_  r , 
r ,  ( G `
 n ) ) )  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
6661, 65mpan2d 674 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
( F `  i
)  <_  ( G `  n )  ->  ( F `  i )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) ) )
6766adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  n  <_  i )  ->  (
( F `  i
)  <_  ( G `  n )  ->  ( F `  i )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) ) )
6857, 67mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  n  <_  i )  ->  ( F `  i )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
69 simpr 461 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  i  e.  Z )
7069, 9syl6eleq 2552 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  i  e.  ( ZZ>= `  M )
)
7141flcld 11764 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( |_ `  n )  e.  ZZ )
7271adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  ( |_ `  n )  e.  ZZ )
73 elfz5 11561 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( ZZ>= `  M )  /\  ( |_ `  n )  e.  ZZ )  ->  (
i  e.  ( M ... ( |_ `  n ) )  <->  i  <_  ( |_ `  n ) ) )
7470, 72, 73syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
i  e.  ( M ... ( |_ `  n ) )  <->  i  <_  ( |_ `  n ) ) )
7511, 69sseldi 3461 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  i  e.  ZZ )
76 flge 11771 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  RR  /\  i  e.  ZZ )  ->  ( i  <_  n  <->  i  <_  ( |_ `  n ) ) )
7747, 75, 76syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
i  <_  n  <->  i  <_  ( |_ `  n ) ) )
7874, 77bitr4d 256 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
i  e.  ( M ... ( |_ `  n ) )  <->  i  <_  n ) )
7978biimpar 485 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  i  <_  n )  ->  i  e.  ( M ... ( |_ `  n ) ) )
80 simprr 756 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  A. m  e.  ( M ... ( |_ `  n ) ) ( F `  m
)  <_  r )
8180ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  i  <_  n )  ->  A. m  e.  ( M ... ( |_ `  n ) ) ( F `  m
)  <_  r )
82 fveq2 5798 . . . . . . . . . . . . . . . 16  |-  ( m  =  i  ->  ( F `  m )  =  ( F `  i ) )
8382breq1d 4409 . . . . . . . . . . . . . . 15  |-  ( m  =  i  ->  (
( F `  m
)  <_  r  <->  ( F `  i )  <_  r
) )
8483rspcv 3173 . . . . . . . . . . . . . 14  |-  ( i  e.  ( M ... ( |_ `  n ) )  ->  ( A. m  e.  ( M ... ( |_ `  n
) ) ( F `
 m )  <_ 
r  ->  ( F `  i )  <_  r
) )
8579, 81, 84sylc 60 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  i  <_  n )  ->  ( F `  i )  <_  r )
86 xrmax2 11258 . . . . . . . . . . . . . . . . 17  |-  ( ( ( G `  n
)  e.  RR*  /\  r  e.  RR* )  ->  r  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
8743, 39, 86syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  r  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) )
8887adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  r  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
89 xrletr 11242 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  i
)  e.  RR*  /\  r  e.  RR*  /\  if ( ( G `  n
)  <_  r , 
r ,  ( G `
 n ) )  e.  RR* )  ->  (
( ( F `  i )  <_  r  /\  r  <_  if ( ( G `  n
)  <_  r , 
r ,  ( G `
 n ) ) )  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
9062, 59, 63, 89syl3anc 1219 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
( ( F `  i )  <_  r  /\  r  <_  if ( ( G `  n
)  <_  r , 
r ,  ( G `
 n ) ) )  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
9188, 90mpan2d 674 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
( F `  i
)  <_  r  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
9291adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  i  <_  n )  ->  (
( F `  i
)  <_  r  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
9385, 92mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  /\  i  <_  n )  ->  ( F `  i )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
9447, 49, 68, 93lecasei 9590 . . . . . . . . . . 11  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  ( F `  i )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) ) )
9594a1d 25 . . . . . . . . . 10  |-  ( ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  /\  i  e.  Z )  ->  (
a  <_  i  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
9695ralrimiva 2829 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  A. i  e.  Z  ( a  <_  i  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) )
974limsupgle 13072 . . . . . . . . . 10  |-  ( ( ( Z  C_  RR  /\  F : Z --> RR* )  /\  a  e.  RR  /\  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) )  e.  RR* )  ->  ( ( G `
 a )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  <->  A. i  e.  Z  ( a  <_  i  ->  ( F `  i
)  <_  if (
( G `  n
)  <_  r , 
r ,  ( G `
 n ) ) ) ) )
9848, 52, 34, 45, 97syl211anc 1225 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( ( G `  a )  <_  if ( ( G `
 n )  <_ 
r ,  r ,  ( G `  n
) )  <->  A. i  e.  Z  ( a  <_  i  ->  ( F `  i )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) ) ) )
9996, 98mpbird 232 . . . . . . . 8  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( G `  a )  <_  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) ) )
100 ltpnf 11212 . . . . . . . . . 10  |-  ( r  e.  RR  ->  r  < +oo )
10138, 100syl 16 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  r  < +oo )
102 simplrr 760 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( G `  n )  < +oo )
103 breq1 4402 . . . . . . . . . 10  |-  ( r  =  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  -> 
( r  < +oo  <->  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  < +oo )
)
104 breq1 4402 . . . . . . . . . 10  |-  ( ( G `  n )  =  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  -> 
( ( G `  n )  < +oo  <->  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  < +oo )
)
105103, 104ifboth 3932 . . . . . . . . 9  |-  ( ( r  < +oo  /\  ( G `  n )  < +oo )  ->  if ( ( G `  n )  <_  r ,  r ,  ( G `  n ) )  < +oo )
106101, 102, 105syl2anc 661 . . . . . . . 8  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  if (
( G `  n
)  <_  r , 
r ,  ( G `
 n ) )  < +oo )
10737, 45, 46, 99, 106xrlelttrd 11244 . . . . . . 7  |-  ( ( ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `
 F )  < +oo )  /\  a  e.  RR )  /\  (
n  e.  RR  /\  ( G `  n )  < +oo ) )  /\  ( r  e.  RR  /\ 
A. m  e.  ( M ... ( |_
`  n ) ) ( F `  m
)  <_  r )
)  ->  ( G `  a )  < +oo )
10832, 107rexlimddv 2949 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  F : Z
--> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  /\  ( n  e.  RR  /\  ( G `
 n )  < +oo ) )  ->  ( G `  a )  < +oo )
10923, 108rexlimddv 2949 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( G `  a )  < +oo )
1107, 109eqbrtrrd 4421 . . . 4  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  sup ( ( ( F
" ( a [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  < +oo )
111 imassrn 5287 . . . . . . . . 9  |-  ( F
" ( a [,) +oo ) )  C_  ran  F
112 frn 5672 . . . . . . . . . 10  |-  ( F : Z --> RR  ->  ran 
F  C_  RR )
11315, 112syl 16 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ran  F 
C_  RR )
114111, 113syl5ss 3474 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( F " ( a [,) +oo ) )  C_  RR )
115114, 16syl6ss 3475 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( F " ( a [,) +oo ) )  C_  RR* )
116 df-ss 3449 . . . . . . 7  |-  ( ( F " ( a [,) +oo ) ) 
C_  RR*  <->  ( ( F
" ( a [,) +oo ) )  i^i  RR* )  =  ( F " ( a [,) +oo ) ) )
117115, 116sylib 196 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  (
( F " (
a [,) +oo )
)  i^i  RR* )  =  ( F " (
a [,) +oo )
) )
118117, 114eqsstrd 3497 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  (
( F " (
a [,) +oo )
)  i^i  RR* )  C_  RR )
119 simpl1 991 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  M  e.  ZZ )
120 flcl 11761 . . . . . . . . . . . . . 14  |-  ( a  e.  RR  ->  ( |_ `  a )  e.  ZZ )
121120adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( |_ `  a )  e.  ZZ )
122121peano2zd 10860 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  (
( |_ `  a
)  +  1 )  e.  ZZ )
123 ifcl 3938 . . . . . . . . . . . 12  |-  ( ( ( ( |_ `  a )  +  1 )  e.  ZZ  /\  M  e.  ZZ )  ->  if ( M  <_ 
( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  ZZ )
124122, 119, 123syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  ZZ )
125119zred 10857 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  M  e.  RR )
126122zred 10857 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  (
( |_ `  a
)  +  1 )  e.  RR )
127 max1 11267 . . . . . . . . . . . 12  |-  ( ( M  e.  RR  /\  ( ( |_ `  a )  +  1 )  e.  RR )  ->  M  <_  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M ) )
128125, 126, 127syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  M  <_  if ( M  <_ 
( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M ) )
129 eluz2 10977 . . . . . . . . . . 11  |-  ( if ( M  <_  (
( |_ `  a
)  +  1 ) ,  ( ( |_
`  a )  +  1 ) ,  M
)  e.  ( ZZ>= `  M )  <->  ( M  e.  ZZ  /\  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a
)  +  1 ) ,  M )  e.  ZZ  /\  M  <_  if ( M  <_  (
( |_ `  a
)  +  1 ) ,  ( ( |_
`  a )  +  1 ) ,  M
) ) )
130119, 124, 128, 129syl3anbrc 1172 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  ( ZZ>= `  M
) )
131130, 9syl6eleqr 2553 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  Z )
132 fdm 5670 . . . . . . . . . 10  |-  ( F : Z --> RR  ->  dom 
F  =  Z )
13315, 132syl 16 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  dom  F  =  Z )
134131, 133eleqtrrd 2545 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  dom  F )
135124zred 10857 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  RR )
136 fllep1 11767 . . . . . . . . . . 11  |-  ( a  e.  RR  ->  a  <_  ( ( |_ `  a )  +  1 ) )
137136adantl 466 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  a  <_  ( ( |_ `  a )  +  1 ) )
138 max2 11269 . . . . . . . . . . 11  |-  ( ( M  e.  RR  /\  ( ( |_ `  a )  +  1 )  e.  RR )  ->  ( ( |_
`  a )  +  1 )  <_  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M ) )
139125, 126, 138syl2anc 661 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  (
( |_ `  a
)  +  1 )  <_  if ( M  <_  ( ( |_
`  a )  +  1 ) ,  ( ( |_ `  a
)  +  1 ) ,  M ) )
14033, 126, 135, 137, 139letrd 9638 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  a  <_  if ( M  <_ 
( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M ) )
141 elicopnf 11501 . . . . . . . . . 10  |-  ( a  e.  RR  ->  ( if ( M  <_  (
( |_ `  a
)  +  1 ) ,  ( ( |_
`  a )  +  1 ) ,  M
)  e.  ( a [,) +oo )  <->  ( if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  RR  /\  a  <_  if ( M  <_ 
( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M ) ) ) )
142141adantl 466 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( if ( M  <_  (
( |_ `  a
)  +  1 ) ,  ( ( |_
`  a )  +  1 ) ,  M
)  e.  ( a [,) +oo )  <->  ( if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  RR  /\  a  <_  if ( M  <_ 
( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M ) ) ) )
143135, 140, 142mpbir2and 913 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  if ( M  <_  ( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  ( a [,) +oo ) )
144 inelcm 3840 . . . . . . . 8  |-  ( ( if ( M  <_ 
( ( |_ `  a )  +  1 ) ,  ( ( |_ `  a )  +  1 ) ,  M )  e.  dom  F  /\  if ( M  <_  ( ( |_
`  a )  +  1 ) ,  ( ( |_ `  a
)  +  1 ) ,  M )  e.  ( a [,) +oo ) )  ->  ( dom  F  i^i  ( a [,) +oo ) )  =/=  (/) )
145134, 143, 144syl2anc 661 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( dom  F  i^i  ( a [,) +oo ) )  =/=  (/) )
146 imadisj 5295 . . . . . . . 8  |-  ( ( F " ( a [,) +oo ) )  =  (/)  <->  ( dom  F  i^i  ( a [,) +oo ) )  =  (/) )
147146necon3bii 2719 . . . . . . 7  |-  ( ( F " ( a [,) +oo ) )  =/=  (/)  <->  ( dom  F  i^i  ( a [,) +oo ) )  =/=  (/) )
148145, 147sylibr 212 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( F " ( a [,) +oo ) )  =/=  (/) )
149117, 148eqnetrd 2744 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  (
( F " (
a [,) +oo )
)  i^i  RR* )  =/=  (/) )
150 supxrre1 11403 . . . . 5  |-  ( ( ( ( F "
( a [,) +oo ) )  i^i  RR* )  C_  RR  /\  (
( F " (
a [,) +oo )
)  i^i  RR* )  =/=  (/) )  ->  ( sup ( ( ( F
" ( a [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  RR  <->  sup (
( ( F "
( a [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  < +oo ) )
151118, 149, 150syl2anc 661 . . . 4  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( sup ( ( ( F
" ( a [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  RR  <->  sup (
( ( F "
( a [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  < +oo ) )
152110, 151mpbird 232 . . 3  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  sup ( ( ( F
" ( a [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  e.  RR )
1537, 152eqeltrd 2542 . 2  |-  ( ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  /\  a  e.  RR )  ->  ( G `  a )  e.  RR )
1543, 5, 153fmpt2d 5981 1  |-  ( ( M  e.  ZZ  /\  F : Z --> RR  /\  ( limsup `  F )  < +oo )  ->  G : RR --> RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2647   A.wral 2798   E.wrex 2799   _Vcvv 3076    i^i cin 3434    C_ wss 3435   (/)c0 3744   ifcif 3898   class class class wbr 4399    |-> cmpt 4457   dom cdm 4947   ran crn 4948   "cima 4950   -->wf 5521   ` cfv 5525  (class class class)co 6199   Fincfn 7419   supcsup 7800   RRcr 9391   1c1 9393    + caddc 9395   +oocpnf 9525   RR*cxr 9527    < clt 9528    <_ cle 9529   ZZcz 10756   ZZ>=cuz 10971   [,)cico 11412   ...cfz 11553   |_cfl 11756   limsupclsp 13065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-cnex 9448  ax-resscn 9449  ax-1cn 9450  ax-icn 9451  ax-addcl 9452  ax-addrcl 9453  ax-mulcl 9454  ax-mulrcl 9455  ax-mulcom 9456  ax-addass 9457  ax-mulass 9458  ax-distr 9459  ax-i2m1 9460  ax-1ne0 9461  ax-1rid 9462  ax-rnegex 9463  ax-rrecex 9464  ax-cnre 9465  ax-pre-lttri 9466  ax-pre-lttrn 9467  ax-pre-ltadd 9468  ax-pre-mulgt0 9469  ax-pre-sup 9470
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-reu 2805  df-rmo 2806  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-pss 3451  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-tp 3989  df-op 3991  df-uni 4199  df-int 4236  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-tr 4493  df-eprel 4739  df-id 4743  df-po 4748  df-so 4749  df-fr 4786  df-we 4788  df-ord 4829  df-on 4830  df-lim 4831  df-suc 4832  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-om 6586  df-1st 6686  df-2nd 6687  df-recs 6941  df-rdg 6975  df-1o 7029  df-oadd 7033  df-er 7210  df-en 7420  df-dom 7421  df-sdom 7422  df-fin 7423  df-sup 7801  df-pnf 9530  df-mnf 9531  df-xr 9532  df-ltxr 9533  df-le 9534  df-sub 9707  df-neg 9708  df-nn 10433  df-n0 10690  df-z 10757  df-uz 10972  df-ico 11416  df-fz 11554  df-fl 11758  df-limsup 13066
This theorem is referenced by:  mbflimsup  21276
  Copyright terms: Public domain W3C validator