MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupbnd2 Structured version   Unicode version

Theorem limsupbnd2 13524
Description: If a sequence is eventually greater than  A, then the limsup is also greater than  A. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
limsupbnd.1  |-  ( ph  ->  B  C_  RR )
limsupbnd.2  |-  ( ph  ->  F : B --> RR* )
limsupbnd.3  |-  ( ph  ->  A  e.  RR* )
limsupbnd2.4  |-  ( ph  ->  sup ( B ,  RR* ,  <  )  = +oo )
limsupbnd2.5  |-  ( ph  ->  E. k  e.  RR  A. j  e.  B  ( k  <_  j  ->  A  <_  ( F `  j ) ) )
Assertion
Ref Expression
limsupbnd2  |-  ( ph  ->  A  <_  ( limsup `  F ) )
Distinct variable groups:    j, k, A    B, j, k    j, F, k    ph, j, k

Proof of Theorem limsupbnd2
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsupbnd2.5 . . 3  |-  ( ph  ->  E. k  e.  RR  A. j  e.  B  ( k  <_  j  ->  A  <_  ( F `  j ) ) )
2 limsupbnd2.4 . . . . . . . . 9  |-  ( ph  ->  sup ( B ,  RR* ,  <  )  = +oo )
3 limsupbnd.1 . . . . . . . . . . 11  |-  ( ph  ->  B  C_  RR )
4 ressxr 9683 . . . . . . . . . . 11  |-  RR  C_  RR*
53, 4syl6ss 3482 . . . . . . . . . 10  |-  ( ph  ->  B  C_  RR* )
6 supxrunb1 11605 . . . . . . . . . 10  |-  ( B 
C_  RR*  ->  ( A. n  e.  RR  E. j  e.  B  n  <_  j  <->  sup ( B ,  RR* ,  <  )  = +oo ) )
75, 6syl 17 . . . . . . . . 9  |-  ( ph  ->  ( A. n  e.  RR  E. j  e.  B  n  <_  j  <->  sup ( B ,  RR* ,  <  )  = +oo ) )
82, 7mpbird 235 . . . . . . . 8  |-  ( ph  ->  A. n  e.  RR  E. j  e.  B  n  <_  j )
9 ifcl 3957 . . . . . . . 8  |-  ( ( m  e.  RR  /\  k  e.  RR )  ->  if ( k  <_  m ,  m , 
k )  e.  RR )
10 breq1 4429 . . . . . . . . . 10  |-  ( n  =  if ( k  <_  m ,  m ,  k )  -> 
( n  <_  j  <->  if ( k  <_  m ,  m ,  k )  <_  j ) )
1110rexbidv 2946 . . . . . . . . 9  |-  ( n  =  if ( k  <_  m ,  m ,  k )  -> 
( E. j  e.  B  n  <_  j  <->  E. j  e.  B  if ( k  <_  m ,  m ,  k )  <_  j ) )
1211rspccva 3187 . . . . . . . 8  |-  ( ( A. n  e.  RR  E. j  e.  B  n  <_  j  /\  if ( k  <_  m ,  m ,  k )  e.  RR )  ->  E. j  e.  B  if ( k  <_  m ,  m ,  k )  <_  j )
138, 9, 12syl2an 479 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  RR  /\  k  e.  RR ) )  ->  E. j  e.  B  if ( k  <_  m ,  m ,  k )  <_  j )
14 r19.29 2970 . . . . . . . 8  |-  ( ( A. j  e.  B  ( k  <_  j  ->  A  <_  ( F `  j ) )  /\  E. j  e.  B  if ( k  <_  m ,  m ,  k )  <_  j )  ->  E. j  e.  B  ( ( k  <_ 
j  ->  A  <_  ( F `  j ) )  /\  if ( k  <_  m ,  m ,  k )  <_  j ) )
15 simplrr 769 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  RR  /\  k  e.  RR )
)  /\  j  e.  B )  ->  k  e.  RR )
16 simprl 762 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( m  e.  RR  /\  k  e.  RR ) )  ->  m  e.  RR )
1716adantr 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  RR  /\  k  e.  RR )
)  /\  j  e.  B )  ->  m  e.  RR )
18 max1 11480 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  RR  /\  m  e.  RR )  ->  k  <_  if (
k  <_  m ,  m ,  k )
)
1915, 17, 18syl2anc 665 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
m  e.  RR  /\  k  e.  RR )
)  /\  j  e.  B )  ->  k  <_  if ( k  <_  m ,  m , 
k ) )
2017, 15, 9syl2anc 665 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  RR  /\  k  e.  RR )
)  /\  j  e.  B )  ->  if ( k  <_  m ,  m ,  k )  e.  RR )
213adantr 466 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( m  e.  RR  /\  k  e.  RR ) )  ->  B  C_  RR )
2221sselda 3470 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  RR  /\  k  e.  RR )
)  /\  j  e.  B )  ->  j  e.  RR )
23 letr 9726 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  RR  /\  if ( k  <_  m ,  m ,  k )  e.  RR  /\  j  e.  RR )  ->  (
( k  <_  if ( k  <_  m ,  m ,  k )  /\  if ( k  <_  m ,  m ,  k )  <_ 
j )  ->  k  <_  j ) )
2415, 20, 22, 23syl3anc 1264 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
m  e.  RR  /\  k  e.  RR )
)  /\  j  e.  B )  ->  (
( k  <_  if ( k  <_  m ,  m ,  k )  /\  if ( k  <_  m ,  m ,  k )  <_ 
j )  ->  k  <_  j ) )
2519, 24mpand 679 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
m  e.  RR  /\  k  e.  RR )
)  /\  j  e.  B )  ->  ( if ( k  <_  m ,  m ,  k )  <_  j  ->  k  <_  j ) )
2625imim1d 78 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
m  e.  RR  /\  k  e.  RR )
)  /\  j  e.  B )  ->  (
( k  <_  j  ->  A  <_  ( F `  j ) )  -> 
( if ( k  <_  m ,  m ,  k )  <_ 
j  ->  A  <_  ( F `  j ) ) ) )
2726impd 432 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  RR  /\  k  e.  RR )
)  /\  j  e.  B )  ->  (
( ( k  <_ 
j  ->  A  <_  ( F `  j ) )  /\  if ( k  <_  m ,  m ,  k )  <_  j )  ->  A  <_  ( F `  j
) ) )
28 max2 11482 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  RR  /\  m  e.  RR )  ->  m  <_  if (
k  <_  m ,  m ,  k )
)
2915, 17, 28syl2anc 665 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
m  e.  RR  /\  k  e.  RR )
)  /\  j  e.  B )  ->  m  <_  if ( k  <_  m ,  m , 
k ) )
30 letr 9726 . . . . . . . . . . . . . . 15  |-  ( ( m  e.  RR  /\  if ( k  <_  m ,  m ,  k )  e.  RR  /\  j  e.  RR )  ->  (
( m  <_  if ( k  <_  m ,  m ,  k )  /\  if ( k  <_  m ,  m ,  k )  <_ 
j )  ->  m  <_  j ) )
3117, 20, 22, 30syl3anc 1264 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
m  e.  RR  /\  k  e.  RR )
)  /\  j  e.  B )  ->  (
( m  <_  if ( k  <_  m ,  m ,  k )  /\  if ( k  <_  m ,  m ,  k )  <_ 
j )  ->  m  <_  j ) )
3229, 31mpand 679 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
m  e.  RR  /\  k  e.  RR )
)  /\  j  e.  B )  ->  ( if ( k  <_  m ,  m ,  k )  <_  j  ->  m  <_  j ) )
3332adantld 468 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
m  e.  RR  /\  k  e.  RR )
)  /\  j  e.  B )  ->  (
( ( k  <_ 
j  ->  A  <_  ( F `  j ) )  /\  if ( k  <_  m ,  m ,  k )  <_  j )  ->  m  <_  j ) )
34 eqid 2429 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  RR  |->  sup (
( ( F "
( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  =  ( n  e.  RR  |->  sup (
( ( F "
( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
3534limsupgf 13511 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  RR  |->  sup (
( ( F "
( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) : RR --> RR*
3635ffvelrni 6036 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  RR  ->  (
( n  e.  RR  |->  sup ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m )  e.  RR* )
3736adantl 467 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  RR )  ->  ( ( n  e.  RR  |->  sup ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m )  e.  RR* )
38 xrleid 11449 . . . . . . . . . . . . . . . 16  |-  ( ( ( n  e.  RR  |->  sup ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m )  e.  RR*  ->  ( ( n  e.  RR  |->  sup ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m )  <_  ( ( n  e.  RR  |->  sup (
( ( F "
( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m ) )
3937, 38syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  RR )  ->  ( ( n  e.  RR  |->  sup ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m )  <_  ( ( n  e.  RR  |->  sup (
( ( F "
( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m ) )
4039adantrr 721 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( m  e.  RR  /\  k  e.  RR ) )  -> 
( ( n  e.  RR  |->  sup ( ( ( F " ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m )  <_  (
( n  e.  RR  |->  sup ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m ) )
41 limsupbnd.2 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F : B --> RR* )
4241adantr 466 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( m  e.  RR  /\  k  e.  RR ) )  ->  F : B --> RR* )
4316, 36syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( m  e.  RR  /\  k  e.  RR ) )  -> 
( ( n  e.  RR  |->  sup ( ( ( F " ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m )  e.  RR* )
4434limsupgle 13513 . . . . . . . . . . . . . . 15  |-  ( ( ( B  C_  RR  /\  F : B --> RR* )  /\  m  e.  RR  /\  ( ( n  e.  RR  |->  sup ( ( ( F " ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m )  e.  RR* )  ->  ( ( ( n  e.  RR  |->  sup ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m )  <_  ( ( n  e.  RR  |->  sup (
( ( F "
( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m )  <->  A. j  e.  B  ( m  <_  j  -> 
( F `  j
)  <_  ( (
n  e.  RR  |->  sup ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m ) ) ) )
4521, 42, 16, 43, 44syl211anc 1270 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( m  e.  RR  /\  k  e.  RR ) )  -> 
( ( ( n  e.  RR  |->  sup (
( ( F "
( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m )  <_  ( ( n  e.  RR  |->  sup (
( ( F "
( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m )  <->  A. j  e.  B  ( m  <_  j  -> 
( F `  j
)  <_  ( (
n  e.  RR  |->  sup ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m ) ) ) )
4640, 45mpbid 213 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  RR  /\  k  e.  RR ) )  ->  A. j  e.  B  ( m  <_  j  -> 
( F `  j
)  <_  ( (
n  e.  RR  |->  sup ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m ) ) )
4746r19.21bi 2801 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
m  e.  RR  /\  k  e.  RR )
)  /\  j  e.  B )  ->  (
m  <_  j  ->  ( F `  j )  <_  ( ( n  e.  RR  |->  sup (
( ( F "
( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m ) ) )
4833, 47syld 45 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  RR  /\  k  e.  RR )
)  /\  j  e.  B )  ->  (
( ( k  <_ 
j  ->  A  <_  ( F `  j ) )  /\  if ( k  <_  m ,  m ,  k )  <_  j )  ->  ( F `  j )  <_  ( ( n  e.  RR  |->  sup ( ( ( F " ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m ) ) )
4927, 48jcad 535 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
m  e.  RR  /\  k  e.  RR )
)  /\  j  e.  B )  ->  (
( ( k  <_ 
j  ->  A  <_  ( F `  j ) )  /\  if ( k  <_  m ,  m ,  k )  <_  j )  ->  ( A  <_  ( F `  j )  /\  ( F `  j )  <_  ( ( n  e.  RR  |->  sup ( ( ( F " ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m ) ) ) )
50 limsupbnd.3 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  RR* )
5150ad2antrr 730 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  RR  /\  k  e.  RR )
)  /\  j  e.  B )  ->  A  e.  RR* )
5242ffvelrnda 6037 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  RR  /\  k  e.  RR )
)  /\  j  e.  B )  ->  ( F `  j )  e.  RR* )
5343adantr 466 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  RR  /\  k  e.  RR )
)  /\  j  e.  B )  ->  (
( n  e.  RR  |->  sup ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m )  e.  RR* )
54 xrletr 11455 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  ( F `  j )  e.  RR*  /\  ( ( n  e.  RR  |->  sup ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m )  e.  RR* )  ->  (
( A  <_  ( F `  j )  /\  ( F `  j
)  <_  ( (
n  e.  RR  |->  sup ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m ) )  ->  A  <_  ( ( n  e.  RR  |->  sup ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m ) ) )
5551, 52, 53, 54syl3anc 1264 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
m  e.  RR  /\  k  e.  RR )
)  /\  j  e.  B )  ->  (
( A  <_  ( F `  j )  /\  ( F `  j
)  <_  ( (
n  e.  RR  |->  sup ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m ) )  ->  A  <_  ( ( n  e.  RR  |->  sup ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m ) ) )
5649, 55syld 45 . . . . . . . . 9  |-  ( ( ( ph  /\  (
m  e.  RR  /\  k  e.  RR )
)  /\  j  e.  B )  ->  (
( ( k  <_ 
j  ->  A  <_  ( F `  j ) )  /\  if ( k  <_  m ,  m ,  k )  <_  j )  ->  A  <_  ( ( n  e.  RR  |->  sup ( ( ( F " ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m ) ) )
5756rexlimdva 2924 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  RR  /\  k  e.  RR ) )  -> 
( E. j  e.  B  ( ( k  <_  j  ->  A  <_  ( F `  j
) )  /\  if ( k  <_  m ,  m ,  k )  <_  j )  ->  A  <_  ( ( n  e.  RR  |->  sup (
( ( F "
( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m ) ) )
5814, 57syl5 33 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  RR  /\  k  e.  RR ) )  -> 
( ( A. j  e.  B  ( k  <_  j  ->  A  <_  ( F `  j ) )  /\  E. j  e.  B  if (
k  <_  m ,  m ,  k )  <_  j )  ->  A  <_  ( ( n  e.  RR  |->  sup ( ( ( F " ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m ) ) )
5913, 58mpan2d 678 . . . . . 6  |-  ( (
ph  /\  ( m  e.  RR  /\  k  e.  RR ) )  -> 
( A. j  e.  B  ( k  <_ 
j  ->  A  <_  ( F `  j ) )  ->  A  <_  ( ( n  e.  RR  |->  sup ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m ) ) )
6059anassrs 652 . . . . 5  |-  ( ( ( ph  /\  m  e.  RR )  /\  k  e.  RR )  ->  ( A. j  e.  B  ( k  <_  j  ->  A  <_  ( F `  j ) )  ->  A  <_  ( ( n  e.  RR  |->  sup (
( ( F "
( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m ) ) )
6160rexlimdva 2924 . . . 4  |-  ( (
ph  /\  m  e.  RR )  ->  ( E. k  e.  RR  A. j  e.  B  (
k  <_  j  ->  A  <_  ( F `  j ) )  ->  A  <_  ( ( n  e.  RR  |->  sup (
( ( F "
( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m ) ) )
6261ralrimdva 2850 . . 3  |-  ( ph  ->  ( E. k  e.  RR  A. j  e.  B  ( k  <_ 
j  ->  A  <_  ( F `  j ) )  ->  A. m  e.  RR  A  <_  (
( n  e.  RR  |->  sup ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m ) ) )
631, 62mpd 15 . 2  |-  ( ph  ->  A. m  e.  RR  A  <_  ( ( n  e.  RR  |->  sup (
( ( F "
( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m ) )
6434limsuple 13514 . . 3  |-  ( ( B  C_  RR  /\  F : B --> RR*  /\  A  e. 
RR* )  ->  ( A  <_  ( limsup `  F
)  <->  A. m  e.  RR  A  <_  ( ( n  e.  RR  |->  sup (
( ( F "
( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m ) ) )
653, 41, 50, 64syl3anc 1264 . 2  |-  ( ph  ->  ( A  <_  ( limsup `
 F )  <->  A. m  e.  RR  A  <_  (
( n  e.  RR  |->  sup ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  m ) ) )
6663, 65mpbird 235 1  |-  ( ph  ->  A  <_  ( limsup `  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870   A.wral 2782   E.wrex 2783    i^i cin 3441    C_ wss 3442   ifcif 3915   class class class wbr 4426    |-> cmpt 4484   "cima 4857   -->wf 5597   ` cfv 5601  (class class class)co 6305   supcsup 7960   RRcr 9537   +oocpnf 9671   RR*cxr 9673    < clt 9674    <_ cle 9675   [,)cico 11637   limsupclsp 13502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-po 4775  df-so 4776  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-sup 7962  df-inf 7963  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-ico 11641  df-limsup 13504
This theorem is referenced by:  caucvgrlem  13714  limsupre  37308
  Copyright terms: Public domain W3C validator