MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupbnd1 Structured version   Unicode version

Theorem limsupbnd1 13081
Description: If a sequence is eventually at most  A, then the limsup is also at most  A. (The converse is only true if the less or equal is replaced by strictly less than; consider the sequence  1  /  n which is never less or equal to zero even though the limsup is.) (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by Mario Carneiro, 7-May-2016.)
Hypotheses
Ref Expression
limsupbnd.1  |-  ( ph  ->  B  C_  RR )
limsupbnd.2  |-  ( ph  ->  F : B --> RR* )
limsupbnd.3  |-  ( ph  ->  A  e.  RR* )
limsupbnd1.4  |-  ( ph  ->  E. k  e.  RR  A. j  e.  B  ( k  <_  j  ->  ( F `  j )  <_  A ) )
Assertion
Ref Expression
limsupbnd1  |-  ( ph  ->  ( limsup `  F )  <_  A )
Distinct variable groups:    j, k, A    B, j, k    j, F, k    ph, j, k

Proof of Theorem limsupbnd1
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 limsupbnd1.4 . 2  |-  ( ph  ->  E. k  e.  RR  A. j  e.  B  ( k  <_  j  ->  ( F `  j )  <_  A ) )
2 limsupbnd.1 . . . . . 6  |-  ( ph  ->  B  C_  RR )
32adantr 465 . . . . 5  |-  ( (
ph  /\  k  e.  RR )  ->  B  C_  RR )
4 limsupbnd.2 . . . . . 6  |-  ( ph  ->  F : B --> RR* )
54adantr 465 . . . . 5  |-  ( (
ph  /\  k  e.  RR )  ->  F : B
--> RR* )
6 simpr 461 . . . . 5  |-  ( (
ph  /\  k  e.  RR )  ->  k  e.  RR )
7 limsupbnd.3 . . . . . 6  |-  ( ph  ->  A  e.  RR* )
87adantr 465 . . . . 5  |-  ( (
ph  /\  k  e.  RR )  ->  A  e. 
RR* )
9 eqid 2454 . . . . . 6  |-  ( n  e.  RR  |->  sup (
( ( F "
( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  =  ( n  e.  RR  |->  sup (
( ( F "
( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
109limsupgle 13076 . . . . 5  |-  ( ( ( B  C_  RR  /\  F : B --> RR* )  /\  k  e.  RR  /\  A  e.  RR* )  ->  ( ( ( n  e.  RR  |->  sup (
( ( F "
( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  k )  <_  A  <->  A. j  e.  B  ( k  <_  j  ->  ( F `  j )  <_  A
) ) )
113, 5, 6, 8, 10syl211anc 1225 . . . 4  |-  ( (
ph  /\  k  e.  RR )  ->  ( ( ( n  e.  RR  |->  sup ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  k )  <_  A  <->  A. j  e.  B  ( k  <_  j  ->  ( F `  j )  <_  A
) ) )
12 reex 9487 . . . . . . . . . . . 12  |-  RR  e.  _V
1312ssex 4547 . . . . . . . . . . 11  |-  ( B 
C_  RR  ->  B  e. 
_V )
142, 13syl 16 . . . . . . . . . 10  |-  ( ph  ->  B  e.  _V )
15 xrex 11102 . . . . . . . . . . 11  |-  RR*  e.  _V
1615a1i 11 . . . . . . . . . 10  |-  ( ph  -> 
RR*  e.  _V )
17 fex2 6645 . . . . . . . . . 10  |-  ( ( F : B --> RR*  /\  B  e.  _V  /\  RR*  e.  _V )  ->  F  e. 
_V )
184, 14, 16, 17syl3anc 1219 . . . . . . . . 9  |-  ( ph  ->  F  e.  _V )
19 limsupcl 13072 . . . . . . . . 9  |-  ( F  e.  _V  ->  ( limsup `
 F )  e. 
RR* )
2018, 19syl 16 . . . . . . . 8  |-  ( ph  ->  ( limsup `  F )  e.  RR* )
21 xrleid 11241 . . . . . . . 8  |-  ( (
limsup `  F )  e. 
RR*  ->  ( limsup `  F
)  <_  ( limsup `  F ) )
2220, 21syl 16 . . . . . . 7  |-  ( ph  ->  ( limsup `  F )  <_  ( limsup `  F )
)
239limsuple 13077 . . . . . . . 8  |-  ( ( B  C_  RR  /\  F : B --> RR*  /\  ( limsup `  F )  e.  RR* )  ->  ( ( limsup `  F )  <_  ( limsup `
 F )  <->  A. k  e.  RR  ( limsup `  F
)  <_  ( (
n  e.  RR  |->  sup ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  k ) ) )
242, 4, 20, 23syl3anc 1219 . . . . . . 7  |-  ( ph  ->  ( ( limsup `  F
)  <_  ( limsup `  F )  <->  A. k  e.  RR  ( limsup `  F
)  <_  ( (
n  e.  RR  |->  sup ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  k ) ) )
2522, 24mpbid 210 . . . . . 6  |-  ( ph  ->  A. k  e.  RR  ( limsup `  F )  <_  ( ( n  e.  RR  |->  sup ( ( ( F " ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  k ) )
2625r19.21bi 2920 . . . . 5  |-  ( (
ph  /\  k  e.  RR )  ->  ( limsup `  F )  <_  (
( n  e.  RR  |->  sup ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  k ) )
2720adantr 465 . . . . . 6  |-  ( (
ph  /\  k  e.  RR )  ->  ( limsup `  F )  e.  RR* )
289limsupgf 13074 . . . . . . . 8  |-  ( n  e.  RR  |->  sup (
( ( F "
( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) : RR --> RR*
2928a1i 11 . . . . . . 7  |-  ( ph  ->  ( n  e.  RR  |->  sup ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) : RR --> RR* )
3029ffvelrnda 5955 . . . . . 6  |-  ( (
ph  /\  k  e.  RR )  ->  ( ( n  e.  RR  |->  sup ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  k )  e.  RR* )
31 xrletr 11246 . . . . . 6  |-  ( ( ( limsup `  F )  e.  RR*  /\  ( ( n  e.  RR  |->  sup ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  k )  e.  RR*  /\  A  e. 
RR* )  ->  (
( ( limsup `  F
)  <_  ( (
n  e.  RR  |->  sup ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  k )  /\  ( ( n  e.  RR  |->  sup (
( ( F "
( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  k )  <_  A )  -> 
( limsup `  F )  <_  A ) )
3227, 30, 8, 31syl3anc 1219 . . . . 5  |-  ( (
ph  /\  k  e.  RR )  ->  ( ( ( limsup `  F )  <_  ( ( n  e.  RR  |->  sup ( ( ( F " ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  k )  /\  (
( n  e.  RR  |->  sup ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  k )  <_  A )  -> 
( limsup `  F )  <_  A ) )
3326, 32mpand 675 . . . 4  |-  ( (
ph  /\  k  e.  RR )  ->  ( ( ( n  e.  RR  |->  sup ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) `  k )  <_  A  ->  ( limsup `
 F )  <_  A ) )
3411, 33sylbird 235 . . 3  |-  ( (
ph  /\  k  e.  RR )  ->  ( A. j  e.  B  (
k  <_  j  ->  ( F `  j )  <_  A )  -> 
( limsup `  F )  <_  A ) )
3534rexlimdva 2947 . 2  |-  ( ph  ->  ( E. k  e.  RR  A. j  e.  B  ( k  <_ 
j  ->  ( F `  j )  <_  A
)  ->  ( limsup `  F )  <_  A
) )
361, 35mpd 15 1  |-  ( ph  ->  ( limsup `  F )  <_  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1758   A.wral 2799   E.wrex 2800   _Vcvv 3078    i^i cin 3438    C_ wss 3439   class class class wbr 4403    |-> cmpt 4461   "cima 4954   -->wf 5525   ` cfv 5529  (class class class)co 6203   supcsup 7804   RRcr 9395   +oocpnf 9529   RR*cxr 9531    < clt 9532    <_ cle 9533   [,)cico 11416   limsupclsp 13069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9452  ax-resscn 9453  ax-1cn 9454  ax-icn 9455  ax-addcl 9456  ax-addrcl 9457  ax-mulcl 9458  ax-mulrcl 9459  ax-mulcom 9460  ax-addass 9461  ax-mulass 9462  ax-distr 9463  ax-i2m1 9464  ax-1ne0 9465  ax-1rid 9466  ax-rnegex 9467  ax-rrecex 9468  ax-cnre 9469  ax-pre-lttri 9470  ax-pre-lttrn 9471  ax-pre-ltadd 9472  ax-pre-mulgt0 9473  ax-pre-sup 9474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-po 4752  df-so 4753  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-er 7214  df-en 7424  df-dom 7425  df-sdom 7426  df-sup 7805  df-pnf 9534  df-mnf 9535  df-xr 9536  df-ltxr 9537  df-le 9538  df-sub 9711  df-neg 9712  df-ico 11420  df-limsup 13070
This theorem is referenced by:  caucvgrlem  13271
  Copyright terms: Public domain W3C validator