MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limomss Structured version   Unicode version

Theorem limomss 6704
Description: The class of natural numbers is a subclass of any (infinite) limit ordinal. Exercise 1 of [TakeutiZaring] p. 44. Remarkably, our proof does not require the Axiom of Infinity. (Contributed by NM, 30-Oct-2003.)
Assertion
Ref Expression
limomss  |-  ( Lim 
A  ->  om  C_  A
)

Proof of Theorem limomss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limord 4946 . 2  |-  ( Lim 
A  ->  Ord  A )
2 ordeleqon 6623 . . 3  |-  ( Ord 
A  <->  ( A  e.  On  \/  A  =  On ) )
3 elom 6702 . . . . . . . . . 10  |-  ( x  e.  om  <->  ( x  e.  On  /\  A. y
( Lim  y  ->  x  e.  y ) ) )
43simprbi 464 . . . . . . . . 9  |-  ( x  e.  om  ->  A. y
( Lim  y  ->  x  e.  y ) )
5 limeq 4899 . . . . . . . . . . 11  |-  ( y  =  A  ->  ( Lim  y  <->  Lim  A ) )
6 eleq2 2530 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
x  e.  y  <->  x  e.  A ) )
75, 6imbi12d 320 . . . . . . . . . 10  |-  ( y  =  A  ->  (
( Lim  y  ->  x  e.  y )  <->  ( Lim  A  ->  x  e.  A
) ) )
87spcgv 3194 . . . . . . . . 9  |-  ( A  e.  On  ->  ( A. y ( Lim  y  ->  x  e.  y )  ->  ( Lim  A  ->  x  e.  A ) ) )
94, 8syl5 32 . . . . . . . 8  |-  ( A  e.  On  ->  (
x  e.  om  ->  ( Lim  A  ->  x  e.  A ) ) )
109com23 78 . . . . . . 7  |-  ( A  e.  On  ->  ( Lim  A  ->  ( x  e.  om  ->  x  e.  A ) ) )
1110imp 429 . . . . . 6  |-  ( ( A  e.  On  /\  Lim  A )  ->  (
x  e.  om  ->  x  e.  A ) )
1211ssrdv 3505 . . . . 5  |-  ( ( A  e.  On  /\  Lim  A )  ->  om  C_  A
)
1312ex 434 . . . 4  |-  ( A  e.  On  ->  ( Lim  A  ->  om  C_  A
) )
14 omsson 6703 . . . . . 6  |-  om  C_  On
15 sseq2 3521 . . . . . 6  |-  ( A  =  On  ->  ( om  C_  A  <->  om  C_  On ) )
1614, 15mpbiri 233 . . . . 5  |-  ( A  =  On  ->  om  C_  A
)
1716a1d 25 . . . 4  |-  ( A  =  On  ->  ( Lim  A  ->  om  C_  A
) )
1813, 17jaoi 379 . . 3  |-  ( ( A  e.  On  \/  A  =  On )  ->  ( Lim  A  ->  om  C_  A ) )
192, 18sylbi 195 . 2  |-  ( Ord 
A  ->  ( Lim  A  ->  om  C_  A ) )
201, 19mpcom 36 1  |-  ( Lim 
A  ->  om  C_  A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369   A.wal 1393    = wceq 1395    e. wcel 1819    C_ wss 3471   Ord word 4886   Oncon0 4887   Lim wlim 4888   omcom 6699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-tr 4551  df-eprel 4800  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-om 6700
This theorem is referenced by:  limom  6714  rdg0  7105  frfnom  7118  frsuc  7120  r1fin  8208  rankdmr1  8236  rankeq0b  8295  cardlim  8370  ackbij2  8640  cfom  8661  wunom  9115  inar1  9170
  Copyright terms: Public domain W3C validator