MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limenpsi Structured version   Unicode version

Theorem limenpsi 7757
Description: A limit ordinal is equinumerous to a proper subset of itself. (Contributed by NM, 30-Oct-2003.) (Revised by Mario Carneiro, 16-Nov-2014.)
Hypothesis
Ref Expression
limenpsi.1  |-  Lim  A
Assertion
Ref Expression
limenpsi  |-  ( A  e.  V  ->  A  ~~  ( A  \  { (/)
} ) )

Proof of Theorem limenpsi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difexg 4572 . . 3  |-  ( A  e.  V  ->  ( A  \  { (/) } )  e.  _V )
2 limenpsi.1 . . . . . . . 8  |-  Lim  A
3 limsuc 6691 . . . . . . . 8  |-  ( Lim 
A  ->  ( x  e.  A  <->  suc  x  e.  A
) )
42, 3ax-mp 5 . . . . . . 7  |-  ( x  e.  A  <->  suc  x  e.  A )
54biimpi 197 . . . . . 6  |-  ( x  e.  A  ->  suc  x  e.  A )
6 nsuceq0 5522 . . . . . 6  |-  suc  x  =/=  (/)
75, 6jctir 540 . . . . 5  |-  ( x  e.  A  ->  ( suc  x  e.  A  /\  suc  x  =/=  (/) ) )
8 eldifsn 4125 . . . . 5  |-  ( suc  x  e.  ( A 
\  { (/) } )  <-> 
( suc  x  e.  A  /\  suc  x  =/=  (/) ) )
97, 8sylibr 215 . . . 4  |-  ( x  e.  A  ->  suc  x  e.  ( A  \  { (/) } ) )
10 limord 5501 . . . . . . 7  |-  ( Lim 
A  ->  Ord  A )
112, 10ax-mp 5 . . . . . 6  |-  Ord  A
12 ordelon 5466 . . . . . 6  |-  ( ( Ord  A  /\  x  e.  A )  ->  x  e.  On )
1311, 12mpan 674 . . . . 5  |-  ( x  e.  A  ->  x  e.  On )
14 ordelon 5466 . . . . . 6  |-  ( ( Ord  A  /\  y  e.  A )  ->  y  e.  On )
1511, 14mpan 674 . . . . 5  |-  ( y  e.  A  ->  y  e.  On )
16 suc11 5545 . . . . 5  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( suc  x  =  suc  y  <->  x  =  y ) )
1713, 15, 16syl2an 479 . . . 4  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( suc  x  =  suc  y  <->  x  =  y ) )
189, 17dom3 7624 . . 3  |-  ( ( A  e.  V  /\  ( A  \  { (/) } )  e.  _V )  ->  A  ~<_  ( A  \  { (/) } ) )
191, 18mpdan 672 . 2  |-  ( A  e.  V  ->  A  ~<_  ( A  \  { (/) } ) )
20 difss 3592 . . 3  |-  ( A 
\  { (/) } ) 
C_  A
21 ssdomg 7626 . . 3  |-  ( A  e.  V  ->  (
( A  \  { (/)
} )  C_  A  ->  ( A  \  { (/)
} )  ~<_  A ) )
2220, 21mpi 20 . 2  |-  ( A  e.  V  ->  ( A  \  { (/) } )  ~<_  A )
23 sbth 7702 . 2  |-  ( ( A  ~<_  ( A  \  { (/) } )  /\  ( A  \  { (/) } )  ~<_  A )  ->  A  ~~  ( A  \  { (/) } ) )
2419, 22, 23syl2anc 665 1  |-  ( A  e.  V  ->  A  ~~  ( A  \  { (/)
} ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1872    =/= wne 2614   _Vcvv 3080    \ cdif 3433    C_ wss 3436   (/)c0 3761   {csn 3998   class class class wbr 4423   Ord word 5441   Oncon0 5442   Lim wlim 5443   suc csuc 5444    ~~ cen 7578    ~<_ cdom 7579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6598
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-en 7582  df-dom 7583
This theorem is referenced by:  limensuci  7758  omenps  8169  infdifsn  8171  ominf4  8750
  Copyright terms: Public domain W3C validator