MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcresi Structured version   Unicode version

Theorem limcresi 21492
Description: Any limit of  F is also a limit of the restriction of  F. (Contributed by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
limcresi  |-  ( F lim
CC  B )  C_  ( ( F  |`  C ) lim CC  B )

Proof of Theorem limcresi
Dummy variables  v  u  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limcrcl 21481 . . . . . . 7  |-  ( x  e.  ( F lim CC  B )  ->  ( F : dom  F --> CC  /\  dom  F  C_  CC  /\  B  e.  CC ) )
21simp1d 1000 . . . . . 6  |-  ( x  e.  ( F lim CC  B )  ->  F : dom  F --> CC )
31simp2d 1001 . . . . . 6  |-  ( x  e.  ( F lim CC  B )  ->  dom  F 
C_  CC )
41simp3d 1002 . . . . . 6  |-  ( x  e.  ( F lim CC  B )  ->  B  e.  CC )
5 eqid 2454 . . . . . 6  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
62, 3, 4, 5ellimc2 21484 . . . . 5  |-  ( x  e.  ( F lim CC  B )  ->  (
x  e.  ( F lim
CC  B )  <->  ( x  e.  CC  /\  A. u  e.  ( TopOpen ` fld ) ( x  e.  u  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( dom  F  \  { B } ) ) )  C_  u )
) ) ) )
76ibi 241 . . . 4  |-  ( x  e.  ( F lim CC  B )  ->  (
x  e.  CC  /\  A. u  e.  ( TopOpen ` fld )
( x  e.  u  ->  E. v  e.  (
TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( dom  F  \  { B } ) ) )  C_  u )
) ) )
8 inss2 3678 . . . . . . . . . . . . 13  |-  ( v  i^i  ( ( dom 
F  i^i  C )  \  { B } ) )  C_  ( ( dom  F  i^i  C ) 
\  { B }
)
9 difss 3590 . . . . . . . . . . . . . 14  |-  ( ( dom  F  i^i  C
)  \  { B } )  C_  ( dom  F  i^i  C )
10 inss2 3678 . . . . . . . . . . . . . 14  |-  ( dom 
F  i^i  C )  C_  C
119, 10sstri 3472 . . . . . . . . . . . . 13  |-  ( ( dom  F  i^i  C
)  \  { B } )  C_  C
128, 11sstri 3472 . . . . . . . . . . . 12  |-  ( v  i^i  ( ( dom 
F  i^i  C )  \  { B } ) )  C_  C
13 resima2 5250 . . . . . . . . . . . 12  |-  ( ( v  i^i  ( ( dom  F  i^i  C
)  \  { B } ) )  C_  C  ->  ( ( F  |`  C ) " (
v  i^i  ( ( dom  F  i^i  C ) 
\  { B }
) ) )  =  ( F " (
v  i^i  ( ( dom  F  i^i  C ) 
\  { B }
) ) ) )
1412, 13ax-mp 5 . . . . . . . . . . 11  |-  ( ( F  |`  C ) " ( v  i^i  ( ( dom  F  i^i  C )  \  { B } ) ) )  =  ( F "
( v  i^i  (
( dom  F  i^i  C )  \  { B } ) ) )
15 inss1 3677 . . . . . . . . . . . . 13  |-  ( dom 
F  i^i  C )  C_ 
dom  F
16 ssdif 3598 . . . . . . . . . . . . 13  |-  ( ( dom  F  i^i  C
)  C_  dom  F  -> 
( ( dom  F  i^i  C )  \  { B } )  C_  ( dom  F  \  { B } ) )
1715, 16ax-mp 5 . . . . . . . . . . . 12  |-  ( ( dom  F  i^i  C
)  \  { B } )  C_  ( dom  F  \  { B } )
18 sslin 3683 . . . . . . . . . . . 12  |-  ( ( ( dom  F  i^i  C )  \  { B } )  C_  ( dom  F  \  { B } )  ->  (
v  i^i  ( ( dom  F  i^i  C ) 
\  { B }
) )  C_  (
v  i^i  ( dom  F 
\  { B }
) ) )
19 imass2 5311 . . . . . . . . . . . 12  |-  ( ( v  i^i  ( ( dom  F  i^i  C
)  \  { B } ) )  C_  ( v  i^i  ( dom  F  \  { B } ) )  -> 
( F " (
v  i^i  ( ( dom  F  i^i  C ) 
\  { B }
) ) )  C_  ( F " ( v  i^i  ( dom  F  \  { B } ) ) ) )
2017, 18, 19mp2b 10 . . . . . . . . . . 11  |-  ( F
" ( v  i^i  ( ( dom  F  i^i  C )  \  { B } ) ) ) 
C_  ( F "
( v  i^i  ( dom  F  \  { B } ) ) )
2114, 20eqsstri 3493 . . . . . . . . . 10  |-  ( ( F  |`  C ) " ( v  i^i  ( ( dom  F  i^i  C )  \  { B } ) ) ) 
C_  ( F "
( v  i^i  ( dom  F  \  { B } ) ) )
22 sstr 3471 . . . . . . . . . 10  |-  ( ( ( ( F  |`  C ) " (
v  i^i  ( ( dom  F  i^i  C ) 
\  { B }
) ) )  C_  ( F " ( v  i^i  ( dom  F  \  { B } ) ) )  /\  ( F " ( v  i^i  ( dom  F  \  { B } ) ) )  C_  u )  ->  ( ( F  |`  C ) " (
v  i^i  ( ( dom  F  i^i  C ) 
\  { B }
) ) )  C_  u )
2321, 22mpan 670 . . . . . . . . 9  |-  ( ( F " ( v  i^i  ( dom  F  \  { B } ) ) )  C_  u  ->  ( ( F  |`  C ) " (
v  i^i  ( ( dom  F  i^i  C ) 
\  { B }
) ) )  C_  u )
2423anim2i 569 . . . . . . . 8  |-  ( ( B  e.  v  /\  ( F " ( v  i^i  ( dom  F  \  { B } ) ) )  C_  u
)  ->  ( B  e.  v  /\  (
( F  |`  C )
" ( v  i^i  ( ( dom  F  i^i  C )  \  { B } ) ) ) 
C_  u ) )
2524reximi 2927 . . . . . . 7  |-  ( E. v  e.  ( TopOpen ` fld )
( B  e.  v  /\  ( F "
( v  i^i  ( dom  F  \  { B } ) ) ) 
C_  u )  ->  E. v  e.  ( TopOpen
` fld
) ( B  e.  v  /\  ( ( F  |`  C ) " ( v  i^i  ( ( dom  F  i^i  C )  \  { B } ) ) ) 
C_  u ) )
2625imim2i 14 . . . . . 6  |-  ( ( x  e.  u  ->  E. v  e.  ( TopOpen
` fld
) ( B  e.  v  /\  ( F
" ( v  i^i  ( dom  F  \  { B } ) ) )  C_  u )
)  ->  ( x  e.  u  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( ( F  |`  C ) " ( v  i^i  ( ( dom  F  i^i  C )  \  { B } ) ) ) 
C_  u ) ) )
2726ralimi 2818 . . . . 5  |-  ( A. u  e.  ( TopOpen ` fld )
( x  e.  u  ->  E. v  e.  (
TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( dom  F  \  { B } ) ) )  C_  u )
)  ->  A. u  e.  ( TopOpen ` fld ) ( x  e.  u  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( ( F  |`  C ) " ( v  i^i  ( ( dom  F  i^i  C )  \  { B } ) ) ) 
C_  u ) ) )
2827anim2i 569 . . . 4  |-  ( ( x  e.  CC  /\  A. u  e.  ( TopOpen ` fld )
( x  e.  u  ->  E. v  e.  (
TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( dom  F  \  { B } ) ) )  C_  u )
) )  ->  (
x  e.  CC  /\  A. u  e.  ( TopOpen ` fld )
( x  e.  u  ->  E. v  e.  (
TopOpen ` fld ) ( B  e.  v  /\  ( ( F  |`  C ) " ( v  i^i  ( ( dom  F  i^i  C )  \  { B } ) ) ) 
C_  u ) ) ) )
297, 28syl 16 . . 3  |-  ( x  e.  ( F lim CC  B )  ->  (
x  e.  CC  /\  A. u  e.  ( TopOpen ` fld )
( x  e.  u  ->  E. v  e.  (
TopOpen ` fld ) ( B  e.  v  /\  ( ( F  |`  C ) " ( v  i^i  ( ( dom  F  i^i  C )  \  { B } ) ) ) 
C_  u ) ) ) )
30 fresin 5687 . . . . 5  |-  ( F : dom  F --> CC  ->  ( F  |`  C ) : ( dom  F  i^i  C ) --> CC )
312, 30syl 16 . . . 4  |-  ( x  e.  ( F lim CC  B )  ->  ( F  |`  C ) : ( dom  F  i^i  C ) --> CC )
3215, 3syl5ss 3474 . . . 4  |-  ( x  e.  ( F lim CC  B )  ->  ( dom  F  i^i  C ) 
C_  CC )
3331, 32, 4, 5ellimc2 21484 . . 3  |-  ( x  e.  ( F lim CC  B )  ->  (
x  e.  ( ( F  |`  C ) lim CC  B )  <->  ( x  e.  CC  /\  A. u  e.  ( TopOpen ` fld ) ( x  e.  u  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( ( F  |`  C ) " ( v  i^i  ( ( dom  F  i^i  C )  \  { B } ) ) ) 
C_  u ) ) ) ) )
3429, 33mpbird 232 . 2  |-  ( x  e.  ( F lim CC  B )  ->  x  e.  ( ( F  |`  C ) lim CC  B ) )
3534ssriv 3467 1  |-  ( F lim
CC  B )  C_  ( ( F  |`  C ) lim CC  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2798   E.wrex 2799    \ cdif 3432    i^i cin 3434    C_ wss 3435   {csn 3984   dom cdm 4947    |` cres 4949   "cima 4950   -->wf 5521   ` cfv 5525  (class class class)co 6199   CCcc 9390   TopOpenctopn 14478  ℂfldccnfld 17942   lim CC climc 21469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4510  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-cnex 9448  ax-resscn 9449  ax-1cn 9450  ax-icn 9451  ax-addcl 9452  ax-addrcl 9453  ax-mulcl 9454  ax-mulrcl 9455  ax-mulcom 9456  ax-addass 9457  ax-mulass 9458  ax-distr 9459  ax-i2m1 9460  ax-1ne0 9461  ax-1rid 9462  ax-rnegex 9463  ax-rrecex 9464  ax-cnre 9465  ax-pre-lttri 9466  ax-pre-lttrn 9467  ax-pre-ltadd 9468  ax-pre-mulgt0 9469  ax-pre-sup 9470
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-reu 2805  df-rmo 2806  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-pss 3451  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-tp 3989  df-op 3991  df-uni 4199  df-int 4236  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-tr 4493  df-eprel 4739  df-id 4743  df-po 4748  df-so 4749  df-fr 4786  df-we 4788  df-ord 4829  df-on 4830  df-lim 4831  df-suc 4832  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-om 6586  df-1st 6686  df-2nd 6687  df-recs 6941  df-rdg 6975  df-1o 7029  df-oadd 7033  df-er 7210  df-map 7325  df-pm 7326  df-en 7420  df-dom 7421  df-sdom 7422  df-fin 7423  df-fi 7771  df-sup 7801  df-pnf 9530  df-mnf 9531  df-xr 9532  df-ltxr 9533  df-le 9534  df-sub 9707  df-neg 9708  df-div 10104  df-nn 10433  df-2 10490  df-3 10491  df-4 10492  df-5 10493  df-6 10494  df-7 10495  df-8 10496  df-9 10497  df-10 10498  df-n0 10690  df-z 10757  df-dec 10866  df-uz 10972  df-q 11064  df-rp 11102  df-xneg 11199  df-xadd 11200  df-xmul 11201  df-fz 11554  df-seq 11923  df-exp 11982  df-cj 12705  df-re 12706  df-im 12707  df-sqr 12841  df-abs 12842  df-struct 14293  df-ndx 14294  df-slot 14295  df-base 14296  df-plusg 14369  df-mulr 14370  df-starv 14371  df-tset 14375  df-ple 14376  df-ds 14378  df-unif 14379  df-rest 14479  df-topn 14480  df-topgen 14500  df-psmet 17933  df-xmet 17934  df-met 17935  df-bl 17936  df-mopn 17937  df-cnfld 17943  df-top 18634  df-bases 18636  df-topon 18637  df-topsp 18638  df-cnp 18963  df-xms 20026  df-ms 20027  df-limc 21473
This theorem is referenced by:  limciun  21501  dvres2lem  21517  dvidlem  21522  dvcnp2  21526  dvcobr  21552  dvcnvlem  21580  lhop1lem  21617  lhop2  21619  lhop  21620  taylthlem2  21971
  Copyright terms: Public domain W3C validator