MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcres Structured version   Unicode version

Theorem limcres 21364
Description: If  B is an interior point of  C  u.  { B } relative to the domain  A, then a limit point of  F  |`  C extends to a limit of  F. (Contributed by Mario Carneiro, 27-Dec-2016.)
Hypotheses
Ref Expression
limcres.f  |-  ( ph  ->  F : A --> CC )
limcres.c  |-  ( ph  ->  C  C_  A )
limcres.a  |-  ( ph  ->  A  C_  CC )
limcres.k  |-  K  =  ( TopOpen ` fld )
limcres.j  |-  J  =  ( Kt  ( A  u.  { B } ) )
limcres.i  |-  ( ph  ->  B  e.  ( ( int `  J ) `
 ( C  u.  { B } ) ) )
Assertion
Ref Expression
limcres  |-  ( ph  ->  ( ( F  |`  C ) lim CC  B )  =  ( F lim CC  B ) )

Proof of Theorem limcres
Dummy variables  z  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limcrcl 21352 . . . . . 6  |-  ( x  e.  ( ( F  |`  C ) lim CC  B
)  ->  ( ( F  |`  C ) : dom  ( F  |`  C ) --> CC  /\  dom  ( F  |`  C ) 
C_  CC  /\  B  e.  CC ) )
21simp3d 1002 . . . . 5  |-  ( x  e.  ( ( F  |`  C ) lim CC  B
)  ->  B  e.  CC )
3 limccl 21353 . . . . . 6  |-  ( ( F  |`  C ) lim CC  B )  C_  CC
43sseli 3355 . . . . 5  |-  ( x  e.  ( ( F  |`  C ) lim CC  B
)  ->  x  e.  CC )
52, 4jca 532 . . . 4  |-  ( x  e.  ( ( F  |`  C ) lim CC  B
)  ->  ( B  e.  CC  /\  x  e.  CC ) )
65a1i 11 . . 3  |-  ( ph  ->  ( x  e.  ( ( F  |`  C ) lim
CC  B )  -> 
( B  e.  CC  /\  x  e.  CC ) ) )
7 limcrcl 21352 . . . . . 6  |-  ( x  e.  ( F lim CC  B )  ->  ( F : dom  F --> CC  /\  dom  F  C_  CC  /\  B  e.  CC ) )
87simp3d 1002 . . . . 5  |-  ( x  e.  ( F lim CC  B )  ->  B  e.  CC )
9 limccl 21353 . . . . . 6  |-  ( F lim
CC  B )  C_  CC
109sseli 3355 . . . . 5  |-  ( x  e.  ( F lim CC  B )  ->  x  e.  CC )
118, 10jca 532 . . . 4  |-  ( x  e.  ( F lim CC  B )  ->  ( B  e.  CC  /\  x  e.  CC ) )
1211a1i 11 . . 3  |-  ( ph  ->  ( x  e.  ( F lim CC  B )  ->  ( B  e.  CC  /\  x  e.  CC ) ) )
13 limcres.j . . . . . . . 8  |-  J  =  ( Kt  ( A  u.  { B } ) )
14 limcres.k . . . . . . . . . 10  |-  K  =  ( TopOpen ` fld )
1514cnfldtopon 20365 . . . . . . . . 9  |-  K  e.  (TopOn `  CC )
16 limcres.a . . . . . . . . . . 11  |-  ( ph  ->  A  C_  CC )
1716adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  ->  A  C_  CC )
18 simprl 755 . . . . . . . . . . 11  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  ->  B  e.  CC )
1918snssd 4021 . . . . . . . . . 10  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  ->  { B }  C_  CC )
2017, 19unssd 3535 . . . . . . . . 9  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( A  u.  { B } )  C_  CC )
21 resttopon 18768 . . . . . . . . 9  |-  ( ( K  e.  (TopOn `  CC )  /\  ( A  u.  { B } )  C_  CC )  ->  ( Kt  ( A  u.  { B }
) )  e.  (TopOn `  ( A  u.  { B } ) ) )
2215, 20, 21sylancr 663 . . . . . . . 8  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( Kt  ( A  u.  { B } ) )  e.  (TopOn `  ( A  u.  { B } ) ) )
2313, 22syl5eqel 2527 . . . . . . 7  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  ->  J  e.  (TopOn `  ( A  u.  { B } ) ) )
24 topontop 18534 . . . . . . 7  |-  ( J  e.  (TopOn `  ( A  u.  { B } ) )  ->  J  e.  Top )
2523, 24syl 16 . . . . . 6  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  ->  J  e.  Top )
26 limcres.c . . . . . . . . 9  |-  ( ph  ->  C  C_  A )
2726adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  ->  C  C_  A )
28 unss1 3528 . . . . . . . 8  |-  ( C 
C_  A  ->  ( C  u.  { B } )  C_  ( A  u.  { B } ) )
2927, 28syl 16 . . . . . . 7  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( C  u.  { B } )  C_  ( A  u.  { B } ) )
30 toponuni 18535 . . . . . . . 8  |-  ( J  e.  (TopOn `  ( A  u.  { B } ) )  -> 
( A  u.  { B } )  =  U. J )
3123, 30syl 16 . . . . . . 7  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( A  u.  { B } )  =  U. J )
3229, 31sseqtrd 3395 . . . . . 6  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( C  u.  { B } )  C_  U. J
)
33 limcres.i . . . . . . 7  |-  ( ph  ->  B  e.  ( ( int `  J ) `
 ( C  u.  { B } ) ) )
3433adantr 465 . . . . . 6  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  ->  B  e.  ( ( int `  J ) `  ( C  u.  { B } ) ) )
35 elun 3500 . . . . . . . . 9  |-  ( z  e.  ( A  u.  { B } )  <->  ( z  e.  A  \/  z  e.  { B } ) )
36 simplrr 760 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  /\  z  e.  A )  ->  x  e.  CC )
37 limcres.f . . . . . . . . . . . . 13  |-  ( ph  ->  F : A --> CC )
3837adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  ->  F : A --> CC )
3938ffvelrnda 5846 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  /\  z  e.  A )  ->  ( F `  z
)  e.  CC )
40 ifcl 3834 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  ( F `  z )  e.  CC )  ->  if ( z  =  B ,  x ,  ( F `  z ) )  e.  CC )
4136, 39, 40syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  /\  z  e.  A )  ->  if ( z  =  B ,  x ,  ( F `  z
) )  e.  CC )
42 elsni 3905 . . . . . . . . . . . . 13  |-  ( z  e.  { B }  ->  z  =  B )
4342adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  /\  z  e.  { B } )  ->  z  =  B )
44 iftrue 3800 . . . . . . . . . . . 12  |-  ( z  =  B  ->  if ( z  =  B ,  x ,  ( F `  z ) )  =  x )
4543, 44syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  /\  z  e.  { B } )  ->  if ( z  =  B ,  x ,  ( F `  z ) )  =  x )
46 simplrr 760 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  /\  z  e.  { B } )  ->  x  e.  CC )
4745, 46eqeltrd 2517 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  /\  z  e.  { B } )  ->  if ( z  =  B ,  x ,  ( F `  z ) )  e.  CC )
4841, 47jaodan 783 . . . . . . . . 9  |-  ( ( ( ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  /\  ( z  e.  A  \/  z  e.  { B } ) )  ->  if ( z  =  B ,  x ,  ( F `  z ) )  e.  CC )
4935, 48sylan2b 475 . . . . . . . 8  |-  ( ( ( ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  /\  z  e.  ( A  u.  { B } ) )  ->  if (
z  =  B ,  x ,  ( F `  z ) )  e.  CC )
50 eqid 2443 . . . . . . . 8  |-  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  x ,  ( F `  z ) ) )  =  ( z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  x ,  ( F `  z ) ) )
5149, 50fmptd 5870 . . . . . . 7  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  x ,  ( F `  z ) ) ) : ( A  u.  { B } ) --> CC )
5231feq2d 5550 . . . . . . 7  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  x ,  ( F `  z ) ) ) : ( A  u.  { B } ) --> CC  <->  ( z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  x ,  ( F `  z ) ) ) : U. J --> CC ) )
5351, 52mpbid 210 . . . . . 6  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  x ,  ( F `  z ) ) ) : U. J --> CC )
54 eqid 2443 . . . . . . 7  |-  U. J  =  U. J
5515toponunii 18540 . . . . . . 7  |-  CC  =  U. K
5654, 55cnprest 18896 . . . . . 6  |-  ( ( ( J  e.  Top  /\  ( C  u.  { B } )  C_  U. J
)  /\  ( B  e.  ( ( int `  J
) `  ( C  u.  { B } ) )  /\  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  x ,  ( F `  z ) ) ) : U. J
--> CC ) )  -> 
( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  x ,  ( F `  z ) ) )  e.  ( ( J  CnP  K ) `  B )  <->  ( (
z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  x ,  ( F `  z ) ) )  |`  ( C  u.  { B } ) )  e.  ( ( ( Jt  ( C  u.  { B } ) )  CnP 
K ) `  B
) ) )
5725, 32, 34, 53, 56syl22anc 1219 . . . . 5  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  x ,  ( F `  z ) ) )  e.  ( ( J  CnP  K ) `  B )  <->  ( (
z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  x ,  ( F `  z ) ) )  |`  ( C  u.  { B } ) )  e.  ( ( ( Jt  ( C  u.  { B } ) )  CnP 
K ) `  B
) ) )
5813, 14, 50, 38, 17, 18ellimc 21351 . . . . 5  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( x  e.  ( F lim CC  B )  <-> 
( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  x ,  ( F `  z ) ) )  e.  ( ( J  CnP  K ) `  B ) ) )
59 eqid 2443 . . . . . . 7  |-  ( Kt  ( C  u.  { B } ) )  =  ( Kt  ( C  u.  { B } ) )
60 eqid 2443 . . . . . . 7  |-  ( z  e.  ( C  u.  { B } )  |->  if ( z  =  B ,  x ,  ( ( F  |`  C ) `
 z ) ) )  =  ( z  e.  ( C  u.  { B } )  |->  if ( z  =  B ,  x ,  ( ( F  |`  C ) `
 z ) ) )
61 fssres 5581 . . . . . . . 8  |-  ( ( F : A --> CC  /\  C  C_  A )  -> 
( F  |`  C ) : C --> CC )
6238, 27, 61syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( F  |`  C ) : C --> CC )
6327, 17sstrd 3369 . . . . . . 7  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  ->  C  C_  CC )
6459, 14, 60, 62, 63, 18ellimc 21351 . . . . . 6  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( x  e.  ( ( F  |`  C ) lim
CC  B )  <->  ( z  e.  ( C  u.  { B } )  |->  if ( z  =  B ,  x ,  ( ( F  |`  C ) `  z ) ) )  e.  ( ( ( Kt  ( C  u.  { B } ) )  CnP 
K ) `  B
) ) )
65 resmpt 5159 . . . . . . . . 9  |-  ( ( C  u.  { B } )  C_  ( A  u.  { B } )  ->  (
( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  x ,  ( F `  z ) ) )  |`  ( C  u.  { B } ) )  =  ( z  e.  ( C  u.  { B } )  |->  if ( z  =  B ,  x ,  ( F `  z ) ) ) )
6629, 65syl 16 . . . . . . . 8  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  x ,  ( F `  z ) ) )  |`  ( C  u.  { B } ) )  =  ( z  e.  ( C  u.  { B } )  |->  if ( z  =  B ,  x ,  ( F `  z ) ) ) )
67 elun 3500 . . . . . . . . . . 11  |-  ( z  e.  ( C  u.  { B } )  <->  ( z  e.  C  \/  z  e.  { B } ) )
68 elsn 3894 . . . . . . . . . . . 12  |-  ( z  e.  { B }  <->  z  =  B )
6968orbi2i 519 . . . . . . . . . . 11  |-  ( ( z  e.  C  \/  z  e.  { B } )  <->  ( z  e.  C  \/  z  =  B ) )
7067, 69bitri 249 . . . . . . . . . 10  |-  ( z  e.  ( C  u.  { B } )  <->  ( z  e.  C  \/  z  =  B ) )
71 pm5.61 712 . . . . . . . . . . . 12  |-  ( ( ( z  e.  C  \/  z  =  B
)  /\  -.  z  =  B )  <->  ( z  e.  C  /\  -.  z  =  B ) )
72 fvres 5707 . . . . . . . . . . . . 13  |-  ( z  e.  C  ->  (
( F  |`  C ) `
 z )  =  ( F `  z
) )
7372adantr 465 . . . . . . . . . . . 12  |-  ( ( z  e.  C  /\  -.  z  =  B
)  ->  ( ( F  |`  C ) `  z )  =  ( F `  z ) )
7471, 73sylbi 195 . . . . . . . . . . 11  |-  ( ( ( z  e.  C  \/  z  =  B
)  /\  -.  z  =  B )  ->  (
( F  |`  C ) `
 z )  =  ( F `  z
) )
7574ifeq2da 3823 . . . . . . . . . 10  |-  ( ( z  e.  C  \/  z  =  B )  ->  if ( z  =  B ,  x ,  ( ( F  |`  C ) `  z
) )  =  if ( z  =  B ,  x ,  ( F `  z ) ) )
7670, 75sylbi 195 . . . . . . . . 9  |-  ( z  e.  ( C  u.  { B } )  ->  if ( z  =  B ,  x ,  ( ( F  |`  C ) `
 z ) )  =  if ( z  =  B ,  x ,  ( F `  z ) ) )
7776mpteq2ia 4377 . . . . . . . 8  |-  ( z  e.  ( C  u.  { B } )  |->  if ( z  =  B ,  x ,  ( ( F  |`  C ) `
 z ) ) )  =  ( z  e.  ( C  u.  { B } )  |->  if ( z  =  B ,  x ,  ( F `  z ) ) )
7866, 77syl6reqr 2494 . . . . . . 7  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( z  e.  ( C  u.  { B } )  |->  if ( z  =  B ,  x ,  ( ( F  |`  C ) `  z ) ) )  =  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  x ,  ( F `  z ) ) )  |`  ( C  u.  { B } ) ) )
7913oveq1i 6104 . . . . . . . . . 10  |-  ( Jt  ( C  u.  { B } ) )  =  ( ( Kt  ( A  u.  { B }
) )t  ( C  u.  { B } ) )
8015a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  ->  K  e.  (TopOn `  CC ) )
81 cnex 9366 . . . . . . . . . . . . 13  |-  CC  e.  _V
8281ssex 4439 . . . . . . . . . . . 12  |-  ( ( A  u.  { B } )  C_  CC  ->  ( A  u.  { B } )  e.  _V )
8320, 82syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( A  u.  { B } )  e.  _V )
84 restabs 18772 . . . . . . . . . . 11  |-  ( ( K  e.  (TopOn `  CC )  /\  ( C  u.  { B } )  C_  ( A  u.  { B } )  /\  ( A  u.  { B } )  e.  _V )  ->  ( ( Kt  ( A  u.  { B } ) )t  ( C  u.  { B }
) )  =  ( Kt  ( C  u.  { B } ) ) )
8580, 29, 83, 84syl3anc 1218 . . . . . . . . . 10  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( ( Kt  ( A  u.  { B }
) )t  ( C  u.  { B } ) )  =  ( Kt  ( C  u.  { B }
) ) )
8679, 85syl5req 2488 . . . . . . . . 9  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( Kt  ( C  u.  { B } ) )  =  ( Jt  ( C  u.  { B }
) ) )
8786oveq1d 6109 . . . . . . . 8  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( ( Kt  ( C  u.  { B }
) )  CnP  K
)  =  ( ( Jt  ( C  u.  { B } ) )  CnP 
K ) )
8887fveq1d 5696 . . . . . . 7  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( ( ( Kt  ( C  u.  { B } ) )  CnP 
K ) `  B
)  =  ( ( ( Jt  ( C  u.  { B } ) )  CnP  K ) `  B ) )
8978, 88eleq12d 2511 . . . . . 6  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( ( z  e.  ( C  u.  { B } )  |->  if ( z  =  B ,  x ,  ( ( F  |`  C ) `  z ) ) )  e.  ( ( ( Kt  ( C  u.  { B } ) )  CnP 
K ) `  B
)  <->  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  x ,  ( F `  z ) ) )  |`  ( C  u.  { B } ) )  e.  ( ( ( Jt  ( C  u.  { B } ) )  CnP 
K ) `  B
) ) )
9064, 89bitrd 253 . . . . 5  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( x  e.  ( ( F  |`  C ) lim
CC  B )  <->  ( (
z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  x ,  ( F `  z ) ) )  |`  ( C  u.  { B } ) )  e.  ( ( ( Jt  ( C  u.  { B } ) )  CnP 
K ) `  B
) ) )
9157, 58, 903bitr4rd 286 . . . 4  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( x  e.  ( ( F  |`  C ) lim
CC  B )  <->  x  e.  ( F lim CC  B ) ) )
9291ex 434 . . 3  |-  ( ph  ->  ( ( B  e.  CC  /\  x  e.  CC )  ->  (
x  e.  ( ( F  |`  C ) lim CC  B )  <->  x  e.  ( F lim CC  B ) ) ) )
936, 12, 92pm5.21ndd 354 . 2  |-  ( ph  ->  ( x  e.  ( ( F  |`  C ) lim
CC  B )  <->  x  e.  ( F lim CC  B ) ) )
9493eqrdv 2441 1  |-  ( ph  ->  ( ( F  |`  C ) lim CC  B )  =  ( F lim CC  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756   _Vcvv 2975    u. cun 3329    C_ wss 3331   ifcif 3794   {csn 3880   U.cuni 4094    e. cmpt 4353   dom cdm 4843    |` cres 4845   -->wf 5417   ` cfv 5421  (class class class)co 6094   CCcc 9283   ↾t crest 14362   TopOpenctopn 14363  ℂfldccnfld 17821   Topctop 18501  TopOnctopon 18502   intcnt 18624    CnP ccnp 18832   lim CC climc 21340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375  ax-cnex 9341  ax-resscn 9342  ax-1cn 9343  ax-icn 9344  ax-addcl 9345  ax-addrcl 9346  ax-mulcl 9347  ax-mulrcl 9348  ax-mulcom 9349  ax-addass 9350  ax-mulass 9351  ax-distr 9352  ax-i2m1 9353  ax-1ne0 9354  ax-1rid 9355  ax-rnegex 9356  ax-rrecex 9357  ax-cnre 9358  ax-pre-lttri 9359  ax-pre-lttrn 9360  ax-pre-ltadd 9361  ax-pre-mulgt0 9362  ax-pre-sup 9363
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-nel 2612  df-ral 2723  df-rex 2724  df-reu 2725  df-rmo 2726  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-pss 3347  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-tp 3885  df-op 3887  df-uni 4095  df-int 4132  df-iun 4176  df-br 4296  df-opab 4354  df-mpt 4355  df-tr 4389  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-riota 6055  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-om 6480  df-1st 6580  df-2nd 6581  df-recs 6835  df-rdg 6869  df-1o 6923  df-oadd 6927  df-er 7104  df-map 7219  df-pm 7220  df-en 7314  df-dom 7315  df-sdom 7316  df-fin 7317  df-fi 7664  df-sup 7694  df-pnf 9423  df-mnf 9424  df-xr 9425  df-ltxr 9426  df-le 9427  df-sub 9600  df-neg 9601  df-div 9997  df-nn 10326  df-2 10383  df-3 10384  df-4 10385  df-5 10386  df-6 10387  df-7 10388  df-8 10389  df-9 10390  df-10 10391  df-n0 10583  df-z 10650  df-dec 10759  df-uz 10865  df-q 10957  df-rp 10995  df-xneg 11092  df-xadd 11093  df-xmul 11094  df-fz 11441  df-seq 11810  df-exp 11869  df-cj 12591  df-re 12592  df-im 12593  df-sqr 12727  df-abs 12728  df-struct 14179  df-ndx 14180  df-slot 14181  df-base 14182  df-plusg 14254  df-mulr 14255  df-starv 14256  df-tset 14260  df-ple 14261  df-ds 14263  df-unif 14264  df-rest 14364  df-topn 14365  df-topgen 14385  df-psmet 17812  df-xmet 17813  df-met 17814  df-bl 17815  df-mopn 17816  df-cnfld 17822  df-top 18506  df-bases 18508  df-topon 18509  df-topsp 18510  df-ntr 18627  df-cnp 18835  df-xms 19898  df-ms 19899  df-limc 21344
This theorem is referenced by:  dvreslem  21387  dvaddbr  21415  dvmulbr  21416  lhop2  21490  lhop  21491
  Copyright terms: Public domain W3C validator