MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcres Structured version   Unicode version

Theorem limcres 22158
Description: If  B is an interior point of  C  u.  { B } relative to the domain  A, then a limit point of  F  |`  C extends to a limit of  F. (Contributed by Mario Carneiro, 27-Dec-2016.)
Hypotheses
Ref Expression
limcres.f  |-  ( ph  ->  F : A --> CC )
limcres.c  |-  ( ph  ->  C  C_  A )
limcres.a  |-  ( ph  ->  A  C_  CC )
limcres.k  |-  K  =  ( TopOpen ` fld )
limcres.j  |-  J  =  ( Kt  ( A  u.  { B } ) )
limcres.i  |-  ( ph  ->  B  e.  ( ( int `  J ) `
 ( C  u.  { B } ) ) )
Assertion
Ref Expression
limcres  |-  ( ph  ->  ( ( F  |`  C ) lim CC  B )  =  ( F lim CC  B ) )

Proof of Theorem limcres
Dummy variables  z  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limcrcl 22146 . . . . . 6  |-  ( x  e.  ( ( F  |`  C ) lim CC  B
)  ->  ( ( F  |`  C ) : dom  ( F  |`  C ) --> CC  /\  dom  ( F  |`  C ) 
C_  CC  /\  B  e.  CC ) )
21simp3d 1010 . . . . 5  |-  ( x  e.  ( ( F  |`  C ) lim CC  B
)  ->  B  e.  CC )
3 limccl 22147 . . . . . 6  |-  ( ( F  |`  C ) lim CC  B )  C_  CC
43sseli 3505 . . . . 5  |-  ( x  e.  ( ( F  |`  C ) lim CC  B
)  ->  x  e.  CC )
52, 4jca 532 . . . 4  |-  ( x  e.  ( ( F  |`  C ) lim CC  B
)  ->  ( B  e.  CC  /\  x  e.  CC ) )
65a1i 11 . . 3  |-  ( ph  ->  ( x  e.  ( ( F  |`  C ) lim
CC  B )  -> 
( B  e.  CC  /\  x  e.  CC ) ) )
7 limcrcl 22146 . . . . . 6  |-  ( x  e.  ( F lim CC  B )  ->  ( F : dom  F --> CC  /\  dom  F  C_  CC  /\  B  e.  CC ) )
87simp3d 1010 . . . . 5  |-  ( x  e.  ( F lim CC  B )  ->  B  e.  CC )
9 limccl 22147 . . . . . 6  |-  ( F lim
CC  B )  C_  CC
109sseli 3505 . . . . 5  |-  ( x  e.  ( F lim CC  B )  ->  x  e.  CC )
118, 10jca 532 . . . 4  |-  ( x  e.  ( F lim CC  B )  ->  ( B  e.  CC  /\  x  e.  CC ) )
1211a1i 11 . . 3  |-  ( ph  ->  ( x  e.  ( F lim CC  B )  ->  ( B  e.  CC  /\  x  e.  CC ) ) )
13 limcres.j . . . . . . . 8  |-  J  =  ( Kt  ( A  u.  { B } ) )
14 limcres.k . . . . . . . . . 10  |-  K  =  ( TopOpen ` fld )
1514cnfldtopon 21158 . . . . . . . . 9  |-  K  e.  (TopOn `  CC )
16 limcres.a . . . . . . . . . . 11  |-  ( ph  ->  A  C_  CC )
1716adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  ->  A  C_  CC )
18 simprl 755 . . . . . . . . . . 11  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  ->  B  e.  CC )
1918snssd 4178 . . . . . . . . . 10  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  ->  { B }  C_  CC )
2017, 19unssd 3685 . . . . . . . . 9  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( A  u.  { B } )  C_  CC )
21 resttopon 19530 . . . . . . . . 9  |-  ( ( K  e.  (TopOn `  CC )  /\  ( A  u.  { B } )  C_  CC )  ->  ( Kt  ( A  u.  { B }
) )  e.  (TopOn `  ( A  u.  { B } ) ) )
2215, 20, 21sylancr 663 . . . . . . . 8  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( Kt  ( A  u.  { B } ) )  e.  (TopOn `  ( A  u.  { B } ) ) )
2313, 22syl5eqel 2559 . . . . . . 7  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  ->  J  e.  (TopOn `  ( A  u.  { B } ) ) )
24 topontop 19296 . . . . . . 7  |-  ( J  e.  (TopOn `  ( A  u.  { B } ) )  ->  J  e.  Top )
2523, 24syl 16 . . . . . 6  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  ->  J  e.  Top )
26 limcres.c . . . . . . . . 9  |-  ( ph  ->  C  C_  A )
2726adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  ->  C  C_  A )
28 unss1 3678 . . . . . . . 8  |-  ( C 
C_  A  ->  ( C  u.  { B } )  C_  ( A  u.  { B } ) )
2927, 28syl 16 . . . . . . 7  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( C  u.  { B } )  C_  ( A  u.  { B } ) )
30 toponuni 19297 . . . . . . . 8  |-  ( J  e.  (TopOn `  ( A  u.  { B } ) )  -> 
( A  u.  { B } )  =  U. J )
3123, 30syl 16 . . . . . . 7  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( A  u.  { B } )  =  U. J )
3229, 31sseqtrd 3545 . . . . . 6  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( C  u.  { B } )  C_  U. J
)
33 limcres.i . . . . . . 7  |-  ( ph  ->  B  e.  ( ( int `  J ) `
 ( C  u.  { B } ) ) )
3433adantr 465 . . . . . 6  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  ->  B  e.  ( ( int `  J ) `  ( C  u.  { B } ) ) )
35 elun 3650 . . . . . . . . 9  |-  ( z  e.  ( A  u.  { B } )  <->  ( z  e.  A  \/  z  e.  { B } ) )
36 simplrr 760 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  /\  z  e.  A )  ->  x  e.  CC )
37 limcres.f . . . . . . . . . . . . 13  |-  ( ph  ->  F : A --> CC )
3837adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  ->  F : A --> CC )
3938ffvelrnda 6032 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  /\  z  e.  A )  ->  ( F `  z
)  e.  CC )
40 ifcl 3987 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  ( F `  z )  e.  CC )  ->  if ( z  =  B ,  x ,  ( F `  z ) )  e.  CC )
4136, 39, 40syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  /\  z  e.  A )  ->  if ( z  =  B ,  x ,  ( F `  z
) )  e.  CC )
42 elsni 4058 . . . . . . . . . . . . 13  |-  ( z  e.  { B }  ->  z  =  B )
4342adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  /\  z  e.  { B } )  ->  z  =  B )
44 iftrue 3951 . . . . . . . . . . . 12  |-  ( z  =  B  ->  if ( z  =  B ,  x ,  ( F `  z ) )  =  x )
4543, 44syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  /\  z  e.  { B } )  ->  if ( z  =  B ,  x ,  ( F `  z ) )  =  x )
46 simplrr 760 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  /\  z  e.  { B } )  ->  x  e.  CC )
4745, 46eqeltrd 2555 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  /\  z  e.  { B } )  ->  if ( z  =  B ,  x ,  ( F `  z ) )  e.  CC )
4841, 47jaodan 783 . . . . . . . . 9  |-  ( ( ( ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  /\  ( z  e.  A  \/  z  e.  { B } ) )  ->  if ( z  =  B ,  x ,  ( F `  z ) )  e.  CC )
4935, 48sylan2b 475 . . . . . . . 8  |-  ( ( ( ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  /\  z  e.  ( A  u.  { B } ) )  ->  if (
z  =  B ,  x ,  ( F `  z ) )  e.  CC )
50 eqid 2467 . . . . . . . 8  |-  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  x ,  ( F `  z ) ) )  =  ( z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  x ,  ( F `  z ) ) )
5149, 50fmptd 6056 . . . . . . 7  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  x ,  ( F `  z ) ) ) : ( A  u.  { B } ) --> CC )
5231feq2d 5724 . . . . . . 7  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  x ,  ( F `  z ) ) ) : ( A  u.  { B } ) --> CC  <->  ( z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  x ,  ( F `  z ) ) ) : U. J --> CC ) )
5351, 52mpbid 210 . . . . . 6  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  x ,  ( F `  z ) ) ) : U. J --> CC )
54 eqid 2467 . . . . . . 7  |-  U. J  =  U. J
5515toponunii 19302 . . . . . . 7  |-  CC  =  U. K
5654, 55cnprest 19658 . . . . . 6  |-  ( ( ( J  e.  Top  /\  ( C  u.  { B } )  C_  U. J
)  /\  ( B  e.  ( ( int `  J
) `  ( C  u.  { B } ) )  /\  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  x ,  ( F `  z ) ) ) : U. J
--> CC ) )  -> 
( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  x ,  ( F `  z ) ) )  e.  ( ( J  CnP  K ) `  B )  <->  ( (
z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  x ,  ( F `  z ) ) )  |`  ( C  u.  { B } ) )  e.  ( ( ( Jt  ( C  u.  { B } ) )  CnP 
K ) `  B
) ) )
5725, 32, 34, 53, 56syl22anc 1229 . . . . 5  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  x ,  ( F `  z ) ) )  e.  ( ( J  CnP  K ) `  B )  <->  ( (
z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  x ,  ( F `  z ) ) )  |`  ( C  u.  { B } ) )  e.  ( ( ( Jt  ( C  u.  { B } ) )  CnP 
K ) `  B
) ) )
5813, 14, 50, 38, 17, 18ellimc 22145 . . . . 5  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( x  e.  ( F lim CC  B )  <-> 
( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  x ,  ( F `  z ) ) )  e.  ( ( J  CnP  K ) `  B ) ) )
59 eqid 2467 . . . . . . 7  |-  ( Kt  ( C  u.  { B } ) )  =  ( Kt  ( C  u.  { B } ) )
60 eqid 2467 . . . . . . 7  |-  ( z  e.  ( C  u.  { B } )  |->  if ( z  =  B ,  x ,  ( ( F  |`  C ) `
 z ) ) )  =  ( z  e.  ( C  u.  { B } )  |->  if ( z  =  B ,  x ,  ( ( F  |`  C ) `
 z ) ) )
61 fssres 5757 . . . . . . . 8  |-  ( ( F : A --> CC  /\  C  C_  A )  -> 
( F  |`  C ) : C --> CC )
6238, 27, 61syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( F  |`  C ) : C --> CC )
6327, 17sstrd 3519 . . . . . . 7  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  ->  C  C_  CC )
6459, 14, 60, 62, 63, 18ellimc 22145 . . . . . 6  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( x  e.  ( ( F  |`  C ) lim
CC  B )  <->  ( z  e.  ( C  u.  { B } )  |->  if ( z  =  B ,  x ,  ( ( F  |`  C ) `  z ) ) )  e.  ( ( ( Kt  ( C  u.  { B } ) )  CnP 
K ) `  B
) ) )
65 resmpt 5329 . . . . . . . . 9  |-  ( ( C  u.  { B } )  C_  ( A  u.  { B } )  ->  (
( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  x ,  ( F `  z ) ) )  |`  ( C  u.  { B } ) )  =  ( z  e.  ( C  u.  { B } )  |->  if ( z  =  B ,  x ,  ( F `  z ) ) ) )
6629, 65syl 16 . . . . . . . 8  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  x ,  ( F `  z ) ) )  |`  ( C  u.  { B } ) )  =  ( z  e.  ( C  u.  { B } )  |->  if ( z  =  B ,  x ,  ( F `  z ) ) ) )
67 elun 3650 . . . . . . . . . . 11  |-  ( z  e.  ( C  u.  { B } )  <->  ( z  e.  C  \/  z  e.  { B } ) )
68 elsn 4047 . . . . . . . . . . . 12  |-  ( z  e.  { B }  <->  z  =  B )
6968orbi2i 519 . . . . . . . . . . 11  |-  ( ( z  e.  C  \/  z  e.  { B } )  <->  ( z  e.  C  \/  z  =  B ) )
7067, 69bitri 249 . . . . . . . . . 10  |-  ( z  e.  ( C  u.  { B } )  <->  ( z  e.  C  \/  z  =  B ) )
71 pm5.61 712 . . . . . . . . . . . 12  |-  ( ( ( z  e.  C  \/  z  =  B
)  /\  -.  z  =  B )  <->  ( z  e.  C  /\  -.  z  =  B ) )
72 fvres 5886 . . . . . . . . . . . . 13  |-  ( z  e.  C  ->  (
( F  |`  C ) `
 z )  =  ( F `  z
) )
7372adantr 465 . . . . . . . . . . . 12  |-  ( ( z  e.  C  /\  -.  z  =  B
)  ->  ( ( F  |`  C ) `  z )  =  ( F `  z ) )
7471, 73sylbi 195 . . . . . . . . . . 11  |-  ( ( ( z  e.  C  \/  z  =  B
)  /\  -.  z  =  B )  ->  (
( F  |`  C ) `
 z )  =  ( F `  z
) )
7574ifeq2da 3976 . . . . . . . . . 10  |-  ( ( z  e.  C  \/  z  =  B )  ->  if ( z  =  B ,  x ,  ( ( F  |`  C ) `  z
) )  =  if ( z  =  B ,  x ,  ( F `  z ) ) )
7670, 75sylbi 195 . . . . . . . . 9  |-  ( z  e.  ( C  u.  { B } )  ->  if ( z  =  B ,  x ,  ( ( F  |`  C ) `
 z ) )  =  if ( z  =  B ,  x ,  ( F `  z ) ) )
7776mpteq2ia 4535 . . . . . . . 8  |-  ( z  e.  ( C  u.  { B } )  |->  if ( z  =  B ,  x ,  ( ( F  |`  C ) `
 z ) ) )  =  ( z  e.  ( C  u.  { B } )  |->  if ( z  =  B ,  x ,  ( F `  z ) ) )
7866, 77syl6reqr 2527 . . . . . . 7  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( z  e.  ( C  u.  { B } )  |->  if ( z  =  B ,  x ,  ( ( F  |`  C ) `  z ) ) )  =  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  x ,  ( F `  z ) ) )  |`  ( C  u.  { B } ) ) )
7913oveq1i 6305 . . . . . . . . . 10  |-  ( Jt  ( C  u.  { B } ) )  =  ( ( Kt  ( A  u.  { B }
) )t  ( C  u.  { B } ) )
8015a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  ->  K  e.  (TopOn `  CC ) )
81 cnex 9585 . . . . . . . . . . . . 13  |-  CC  e.  _V
8281ssex 4597 . . . . . . . . . . . 12  |-  ( ( A  u.  { B } )  C_  CC  ->  ( A  u.  { B } )  e.  _V )
8320, 82syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( A  u.  { B } )  e.  _V )
84 restabs 19534 . . . . . . . . . . 11  |-  ( ( K  e.  (TopOn `  CC )  /\  ( C  u.  { B } )  C_  ( A  u.  { B } )  /\  ( A  u.  { B } )  e.  _V )  ->  ( ( Kt  ( A  u.  { B } ) )t  ( C  u.  { B }
) )  =  ( Kt  ( C  u.  { B } ) ) )
8580, 29, 83, 84syl3anc 1228 . . . . . . . . . 10  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( ( Kt  ( A  u.  { B }
) )t  ( C  u.  { B } ) )  =  ( Kt  ( C  u.  { B }
) ) )
8679, 85syl5req 2521 . . . . . . . . 9  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( Kt  ( C  u.  { B } ) )  =  ( Jt  ( C  u.  { B }
) ) )
8786oveq1d 6310 . . . . . . . 8  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( ( Kt  ( C  u.  { B }
) )  CnP  K
)  =  ( ( Jt  ( C  u.  { B } ) )  CnP 
K ) )
8887fveq1d 5874 . . . . . . 7  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( ( ( Kt  ( C  u.  { B } ) )  CnP 
K ) `  B
)  =  ( ( ( Jt  ( C  u.  { B } ) )  CnP  K ) `  B ) )
8978, 88eleq12d 2549 . . . . . 6  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( ( z  e.  ( C  u.  { B } )  |->  if ( z  =  B ,  x ,  ( ( F  |`  C ) `  z ) ) )  e.  ( ( ( Kt  ( C  u.  { B } ) )  CnP 
K ) `  B
)  <->  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  x ,  ( F `  z ) ) )  |`  ( C  u.  { B } ) )  e.  ( ( ( Jt  ( C  u.  { B } ) )  CnP 
K ) `  B
) ) )
9064, 89bitrd 253 . . . . 5  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( x  e.  ( ( F  |`  C ) lim
CC  B )  <->  ( (
z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  x ,  ( F `  z ) ) )  |`  ( C  u.  { B } ) )  e.  ( ( ( Jt  ( C  u.  { B } ) )  CnP 
K ) `  B
) ) )
9157, 58, 903bitr4rd 286 . . . 4  |-  ( (
ph  /\  ( B  e.  CC  /\  x  e.  CC ) )  -> 
( x  e.  ( ( F  |`  C ) lim
CC  B )  <->  x  e.  ( F lim CC  B ) ) )
9291ex 434 . . 3  |-  ( ph  ->  ( ( B  e.  CC  /\  x  e.  CC )  ->  (
x  e.  ( ( F  |`  C ) lim CC  B )  <->  x  e.  ( F lim CC  B ) ) ) )
936, 12, 92pm5.21ndd 354 . 2  |-  ( ph  ->  ( x  e.  ( ( F  |`  C ) lim
CC  B )  <->  x  e.  ( F lim CC  B ) ) )
9493eqrdv 2464 1  |-  ( ph  ->  ( ( F  |`  C ) lim CC  B )  =  ( F lim CC  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3118    u. cun 3479    C_ wss 3481   ifcif 3945   {csn 4033   U.cuni 4251    |-> cmpt 4511   dom cdm 5005    |` cres 5007   -->wf 5590   ` cfv 5594  (class class class)co 6295   CCcc 9502   ↾t crest 14693   TopOpenctopn 14694  ℂfldccnfld 18290   Topctop 19263  TopOnctopon 19264   intcnt 19386    CnP ccnp 19594   lim CC climc 22134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-er 7323  df-map 7434  df-pm 7435  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-fi 7883  df-sup 7913  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-4 10608  df-5 10609  df-6 10610  df-7 10611  df-8 10612  df-9 10613  df-10 10614  df-n0 10808  df-z 10877  df-dec 10989  df-uz 11095  df-q 11195  df-rp 11233  df-xneg 11330  df-xadd 11331  df-xmul 11332  df-fz 11685  df-seq 12088  df-exp 12147  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-struct 14509  df-ndx 14510  df-slot 14511  df-base 14512  df-plusg 14585  df-mulr 14586  df-starv 14587  df-tset 14591  df-ple 14592  df-ds 14594  df-unif 14595  df-rest 14695  df-topn 14696  df-topgen 14716  df-psmet 18281  df-xmet 18282  df-met 18283  df-bl 18284  df-mopn 18285  df-cnfld 18291  df-top 19268  df-bases 19270  df-topon 19271  df-topsp 19272  df-ntr 19389  df-cnp 19597  df-xms 20691  df-ms 20692  df-limc 22138
This theorem is referenced by:  dvreslem  22181  dvaddbr  22209  dvmulbr  22210  lhop2  22284  lhop  22285  limciccioolb  31486  limcicciooub  31502  limcresiooub  31507  limcresioolb  31508  ioccncflimc  31547  icocncflimc  31551  cncfiooicclem1  31555  dirkercncflem3  31728  fourierdlem32  31762  fourierdlem33  31763  fourierdlem48  31778  fourierdlem49  31779  fourierdlem62  31792  fouriersw  31855
  Copyright terms: Public domain W3C validator