MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcrcl Structured version   Unicode version

Theorem limcrcl 21349
Description: Reverse closure for the limit operator. (Contributed by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
limcrcl  |-  ( C  e.  ( F lim CC  B )  ->  ( F : dom  F --> CC  /\  dom  F  C_  CC  /\  B  e.  CC ) )

Proof of Theorem limcrcl
Dummy variables  f 
j  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-limc 21341 . . 3  |- lim CC  =  ( f  e.  ( CC  ^pm  CC ) ,  x  e.  CC  |->  { y  |  [. ( TopOpen ` fld )  /  j ]. ( z  e.  ( dom  f  u.  {
x } )  |->  if ( z  =  x ,  y ,  ( f `  z ) ) )  e.  ( ( ( jt  ( dom  f  u.  { x } ) )  CnP  j ) `  x
) } )
21elmpt2cl 6304 . 2  |-  ( C  e.  ( F lim CC  B )  ->  ( F  e.  ( CC  ^pm 
CC )  /\  B  e.  CC ) )
3 cnex 9363 . . . . 5  |-  CC  e.  _V
43, 3elpm2 7244 . . . 4  |-  ( F  e.  ( CC  ^pm  CC )  <->  ( F : dom  F --> CC  /\  dom  F 
C_  CC ) )
54anbi1i 695 . . 3  |-  ( ( F  e.  ( CC 
^pm  CC )  /\  B  e.  CC )  <->  ( ( F : dom  F --> CC  /\  dom  F  C_  CC )  /\  B  e.  CC ) )
6 df-3an 967 . . 3  |-  ( ( F : dom  F --> CC  /\  dom  F  C_  CC  /\  B  e.  CC ) 
<->  ( ( F : dom  F --> CC  /\  dom  F 
C_  CC )  /\  B  e.  CC )
)
75, 6bitr4i 252 . 2  |-  ( ( F  e.  ( CC 
^pm  CC )  /\  B  e.  CC )  <->  ( F : dom  F --> CC  /\  dom  F  C_  CC  /\  B  e.  CC ) )
82, 7sylib 196 1  |-  ( C  e.  ( F lim CC  B )  ->  ( F : dom  F --> CC  /\  dom  F  C_  CC  /\  B  e.  CC ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    e. wcel 1756   {cab 2429   [.wsbc 3186    u. cun 3326    C_ wss 3328   ifcif 3791   {csn 3877    e. cmpt 4350   dom cdm 4840   -->wf 5414   ` cfv 5418  (class class class)co 6091    ^pm cpm 7215   CCcc 9280   ↾t crest 14359   TopOpenctopn 14360  ℂfldccnfld 17818    CnP ccnp 18829   lim CC climc 21337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-rab 2724  df-v 2974  df-sbc 3187  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-br 4293  df-opab 4351  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-fv 5426  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-pm 7217  df-limc 21341
This theorem is referenced by:  limccl  21350  limcdif  21351  limcresi  21360  limcres  21361  limccnp  21366  limccnp2  21367  limcco  21368  limcun  21370
  Copyright terms: Public domain W3C validator