MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcmpt2 Structured version   Unicode version

Theorem limcmpt2 21359
Description: Express the limit operator for a function defined by a mapping. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
limcmpt2.a  |-  ( ph  ->  A  C_  CC )
limcmpt2.b  |-  ( ph  ->  B  e.  A )
limcmpt2.f  |-  ( (
ph  /\  ( z  e.  A  /\  z  =/=  B ) )  ->  D  e.  CC )
limcmpt2.j  |-  J  =  ( Kt  A )
limcmpt2.k  |-  K  =  ( TopOpen ` fld )
Assertion
Ref Expression
limcmpt2  |-  ( ph  ->  ( C  e.  ( ( z  e.  ( A  \  { B } )  |->  D ) lim
CC  B )  <->  ( z  e.  A  |->  if ( z  =  B ,  C ,  D )
)  e.  ( ( J  CnP  K ) `
 B ) ) )
Distinct variable groups:    z, A    z, B    z, C    ph, z
Allowed substitution hints:    D( z)    J( z)    K( z)

Proof of Theorem limcmpt2
StepHypRef Expression
1 limcmpt2.a . . . 4  |-  ( ph  ->  A  C_  CC )
21ssdifssd 3494 . . 3  |-  ( ph  ->  ( A  \  { B } )  C_  CC )
3 limcmpt2.b . . . 4  |-  ( ph  ->  B  e.  A )
41, 3sseldd 3357 . . 3  |-  ( ph  ->  B  e.  CC )
5 eldifsn 4000 . . . 4  |-  ( z  e.  ( A  \  { B } )  <->  ( z  e.  A  /\  z  =/=  B ) )
6 limcmpt2.f . . . 4  |-  ( (
ph  /\  ( z  e.  A  /\  z  =/=  B ) )  ->  D  e.  CC )
75, 6sylan2b 475 . . 3  |-  ( (
ph  /\  z  e.  ( A  \  { B } ) )  ->  D  e.  CC )
8 eqid 2443 . . 3  |-  ( Kt  ( ( A  \  { B } )  u.  { B } ) )  =  ( Kt  ( ( A 
\  { B }
)  u.  { B } ) )
9 limcmpt2.k . . 3  |-  K  =  ( TopOpen ` fld )
102, 4, 7, 8, 9limcmpt 21358 . 2  |-  ( ph  ->  ( C  e.  ( ( z  e.  ( A  \  { B } )  |->  D ) lim
CC  B )  <->  ( z  e.  ( ( A  \  { B } )  u. 
{ B } ) 
|->  if ( z  =  B ,  C ,  D ) )  e.  ( ( ( Kt  ( ( A  \  { B } )  u.  { B } ) )  CnP 
K ) `  B
) ) )
11 undif1 3754 . . . . 5  |-  ( ( A  \  { B } )  u.  { B } )  =  ( A  u.  { B } )
123snssd 4018 . . . . . 6  |-  ( ph  ->  { B }  C_  A )
13 ssequn2 3529 . . . . . 6  |-  ( { B }  C_  A  <->  ( A  u.  { B } )  =  A )
1412, 13sylib 196 . . . . 5  |-  ( ph  ->  ( A  u.  { B } )  =  A )
1511, 14syl5eq 2487 . . . 4  |-  ( ph  ->  ( ( A  \  { B } )  u. 
{ B } )  =  A )
1615mpteq1d 4373 . . 3  |-  ( ph  ->  ( z  e.  ( ( A  \  { B } )  u.  { B } )  |->  if ( z  =  B ,  C ,  D )
)  =  ( z  e.  A  |->  if ( z  =  B ,  C ,  D )
) )
1715oveq2d 6107 . . . . . 6  |-  ( ph  ->  ( Kt  ( ( A 
\  { B }
)  u.  { B } ) )  =  ( Kt  A ) )
18 limcmpt2.j . . . . . 6  |-  J  =  ( Kt  A )
1917, 18syl6eqr 2493 . . . . 5  |-  ( ph  ->  ( Kt  ( ( A 
\  { B }
)  u.  { B } ) )  =  J )
2019oveq1d 6106 . . . 4  |-  ( ph  ->  ( ( Kt  ( ( A  \  { B } )  u.  { B } ) )  CnP 
K )  =  ( J  CnP  K ) )
2120fveq1d 5693 . . 3  |-  ( ph  ->  ( ( ( Kt  ( ( A  \  { B } )  u.  { B } ) )  CnP 
K ) `  B
)  =  ( ( J  CnP  K ) `
 B ) )
2216, 21eleq12d 2511 . 2  |-  ( ph  ->  ( ( z  e.  ( ( A  \  { B } )  u. 
{ B } ) 
|->  if ( z  =  B ,  C ,  D ) )  e.  ( ( ( Kt  ( ( A  \  { B } )  u.  { B } ) )  CnP 
K ) `  B
)  <->  ( z  e.  A  |->  if ( z  =  B ,  C ,  D ) )  e.  ( ( J  CnP  K ) `  B ) ) )
2310, 22bitrd 253 1  |-  ( ph  ->  ( C  e.  ( ( z  e.  ( A  \  { B } )  |->  D ) lim
CC  B )  <->  ( z  e.  A  |->  if ( z  =  B ,  C ,  D )
)  e.  ( ( J  CnP  K ) `
 B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2606    \ cdif 3325    u. cun 3326    C_ wss 3328   ifcif 3791   {csn 3877    e. cmpt 4350   ` cfv 5418  (class class class)co 6091   CCcc 9280   ↾t crest 14359   TopOpenctopn 14360  ℂfldccnfld 17818    CnP ccnp 18829   lim CC climc 21337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-oadd 6924  df-er 7101  df-map 7216  df-pm 7217  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-fi 7661  df-sup 7691  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-4 10382  df-5 10383  df-6 10384  df-7 10385  df-8 10386  df-9 10387  df-10 10388  df-n0 10580  df-z 10647  df-dec 10756  df-uz 10862  df-q 10954  df-rp 10992  df-xneg 11089  df-xadd 11090  df-xmul 11091  df-fz 11438  df-seq 11807  df-exp 11866  df-cj 12588  df-re 12589  df-im 12590  df-sqr 12724  df-abs 12725  df-struct 14176  df-ndx 14177  df-slot 14178  df-base 14179  df-plusg 14251  df-mulr 14252  df-starv 14253  df-tset 14257  df-ple 14258  df-ds 14260  df-unif 14261  df-rest 14361  df-topn 14362  df-topgen 14382  df-psmet 17809  df-xmet 17810  df-met 17811  df-bl 17812  df-mopn 17813  df-cnfld 17819  df-top 18503  df-bases 18505  df-topon 18506  df-topsp 18507  df-cnp 18832  df-xms 19895  df-ms 19896  df-limc 21341
This theorem is referenced by:  dvcnp  21393
  Copyright terms: Public domain W3C validator