MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limccnp2 Structured version   Unicode version

Theorem limccnp2 22274
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
limccnp2.r  |-  ( (
ph  /\  x  e.  A )  ->  R  e.  X )
limccnp2.s  |-  ( (
ph  /\  x  e.  A )  ->  S  e.  Y )
limccnp2.x  |-  ( ph  ->  X  C_  CC )
limccnp2.y  |-  ( ph  ->  Y  C_  CC )
limccnp2.k  |-  K  =  ( TopOpen ` fld )
limccnp2.j  |-  J  =  ( ( K  tX  K )t  ( X  X.  Y ) )
limccnp2.c  |-  ( ph  ->  C  e.  ( ( x  e.  A  |->  R ) lim CC  B ) )
limccnp2.d  |-  ( ph  ->  D  e.  ( ( x  e.  A  |->  S ) lim CC  B ) )
limccnp2.h  |-  ( ph  ->  H  e.  ( ( J  CnP  K ) `
 <. C ,  D >. ) )
Assertion
Ref Expression
limccnp2  |-  ( ph  ->  ( C H D )  e.  ( ( x  e.  A  |->  ( R H S ) ) lim CC  B ) )
Distinct variable groups:    x, B    x, C    x, D    x, H    ph, x    x, X    x, A    x, Y
Allowed substitution hints:    R( x)    S( x)    J( x)    K( x)

Proof of Theorem limccnp2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 limccnp2.h . . . . . . . . . . 11  |-  ( ph  ->  H  e.  ( ( J  CnP  K ) `
 <. C ,  D >. ) )
2 eqid 2443 . . . . . . . . . . . 12  |-  U. J  =  U. J
32cnprcl 19724 . . . . . . . . . . 11  |-  ( H  e.  ( ( J  CnP  K ) `  <. C ,  D >. )  ->  <. C ,  D >.  e.  U. J )
41, 3syl 16 . . . . . . . . . 10  |-  ( ph  -> 
<. C ,  D >.  e. 
U. J )
5 limccnp2.j . . . . . . . . . . . 12  |-  J  =  ( ( K  tX  K )t  ( X  X.  Y ) )
6 limccnp2.k . . . . . . . . . . . . . . 15  |-  K  =  ( TopOpen ` fld )
76cnfldtopon 21268 . . . . . . . . . . . . . 14  |-  K  e.  (TopOn `  CC )
8 txtopon 20070 . . . . . . . . . . . . . 14  |-  ( ( K  e.  (TopOn `  CC )  /\  K  e.  (TopOn `  CC )
)  ->  ( K  tX  K )  e.  (TopOn `  ( CC  X.  CC ) ) )
97, 7, 8mp2an 672 . . . . . . . . . . . . 13  |-  ( K 
tX  K )  e.  (TopOn `  ( CC  X.  CC ) )
10 limccnp2.x . . . . . . . . . . . . . 14  |-  ( ph  ->  X  C_  CC )
11 limccnp2.y . . . . . . . . . . . . . 14  |-  ( ph  ->  Y  C_  CC )
12 xpss12 5098 . . . . . . . . . . . . . 14  |-  ( ( X  C_  CC  /\  Y  C_  CC )  ->  ( X  X.  Y )  C_  ( CC  X.  CC ) )
1310, 11, 12syl2anc 661 . . . . . . . . . . . . 13  |-  ( ph  ->  ( X  X.  Y
)  C_  ( CC  X.  CC ) )
14 resttopon 19640 . . . . . . . . . . . . 13  |-  ( ( ( K  tX  K
)  e.  (TopOn `  ( CC  X.  CC ) )  /\  ( X  X.  Y )  C_  ( CC  X.  CC ) )  ->  (
( K  tX  K
)t  ( X  X.  Y
) )  e.  (TopOn `  ( X  X.  Y
) ) )
159, 13, 14sylancr 663 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( K  tX  K )t  ( X  X.  Y ) )  e.  (TopOn `  ( X  X.  Y ) ) )
165, 15syl5eqel 2535 . . . . . . . . . . 11  |-  ( ph  ->  J  e.  (TopOn `  ( X  X.  Y
) ) )
17 toponuni 19406 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  ( X  X.  Y ) )  ->  ( X  X.  Y )  =  U. J )
1816, 17syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( X  X.  Y
)  =  U. J
)
194, 18eleqtrrd 2534 . . . . . . . . 9  |-  ( ph  -> 
<. C ,  D >.  e.  ( X  X.  Y
) )
20 opelxp 5019 . . . . . . . . 9  |-  ( <. C ,  D >.  e.  ( X  X.  Y
)  <->  ( C  e.  X  /\  D  e.  Y ) )
2119, 20sylib 196 . . . . . . . 8  |-  ( ph  ->  ( C  e.  X  /\  D  e.  Y
) )
2221simpld 459 . . . . . . 7  |-  ( ph  ->  C  e.  X )
2322ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( A  u.  { B } ) )  /\  x  =  B )  ->  C  e.  X )
24 simpll 753 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( A  u.  { B } ) )  /\  -.  x  =  B
)  ->  ph )
25 simpr 461 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A  u.  { B } ) )  ->  x  e.  ( A  u.  { B } ) )
26 elun 3630 . . . . . . . . . . . 12  |-  ( x  e.  ( A  u.  { B } )  <->  ( x  e.  A  \/  x  e.  { B } ) )
2725, 26sylib 196 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A  u.  { B } ) )  -> 
( x  e.  A  \/  x  e.  { B } ) )
2827ord 377 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A  u.  { B } ) )  -> 
( -.  x  e.  A  ->  x  e.  { B } ) )
29 elsni 4039 . . . . . . . . . 10  |-  ( x  e.  { B }  ->  x  =  B )
3028, 29syl6 33 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( A  u.  { B } ) )  -> 
( -.  x  e.  A  ->  x  =  B ) )
3130con1d 124 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A  u.  { B } ) )  -> 
( -.  x  =  B  ->  x  e.  A ) )
3231imp 429 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( A  u.  { B } ) )  /\  -.  x  =  B
)  ->  x  e.  A )
33 limccnp2.r . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  R  e.  X )
3424, 32, 33syl2anc 661 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( A  u.  { B } ) )  /\  -.  x  =  B
)  ->  R  e.  X )
3523, 34ifclda 3958 . . . . 5  |-  ( (
ph  /\  x  e.  ( A  u.  { B } ) )  ->  if ( x  =  B ,  C ,  R
)  e.  X )
3621simprd 463 . . . . . . 7  |-  ( ph  ->  D  e.  Y )
3736ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( A  u.  { B } ) )  /\  x  =  B )  ->  D  e.  Y )
38 limccnp2.s . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  S  e.  Y )
3924, 32, 38syl2anc 661 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( A  u.  { B } ) )  /\  -.  x  =  B
)  ->  S  e.  Y )
4037, 39ifclda 3958 . . . . 5  |-  ( (
ph  /\  x  e.  ( A  u.  { B } ) )  ->  if ( x  =  B ,  D ,  S
)  e.  Y )
41 opelxpi 5021 . . . . 5  |-  ( ( if ( x  =  B ,  C ,  R )  e.  X  /\  if ( x  =  B ,  D ,  S )  e.  Y
)  ->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >.  e.  ( X  X.  Y ) )
4235, 40, 41syl2anc 661 . . . 4  |-  ( (
ph  /\  x  e.  ( A  u.  { B } ) )  ->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S )
>.  e.  ( X  X.  Y ) )
43 eqidd 2444 . . . 4  |-  ( ph  ->  ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. )  =  ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. )
)
447a1i 11 . . . . . 6  |-  ( ph  ->  K  e.  (TopOn `  CC ) )
45 cnpf2 19729 . . . . . 6  |-  ( ( J  e.  (TopOn `  ( X  X.  Y
) )  /\  K  e.  (TopOn `  CC )  /\  H  e.  (
( J  CnP  K
) `  <. C ,  D >. ) )  ->  H : ( X  X.  Y ) --> CC )
4616, 44, 1, 45syl3anc 1229 . . . . 5  |-  ( ph  ->  H : ( X  X.  Y ) --> CC )
4746feqmptd 5911 . . . 4  |-  ( ph  ->  H  =  ( y  e.  ( X  X.  Y )  |->  ( H `
 y ) ) )
48 fveq2 5856 . . . . 5  |-  ( y  =  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S )
>.  ->  ( H `  y )  =  ( H `  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. )
)
49 df-ov 6284 . . . . . 6  |-  ( if ( x  =  B ,  C ,  R
) H if ( x  =  B ,  D ,  S )
)  =  ( H `
 <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S )
>. )
50 ovif12 6366 . . . . . 6  |-  ( if ( x  =  B ,  C ,  R
) H if ( x  =  B ,  D ,  S )
)  =  if ( x  =  B , 
( C H D ) ,  ( R H S ) )
5149, 50eqtr3i 2474 . . . . 5  |-  ( H `
 <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S )
>. )  =  if ( x  =  B ,  ( C H D ) ,  ( R H S ) )
5248, 51syl6eq 2500 . . . 4  |-  ( y  =  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S )
>.  ->  ( H `  y )  =  if ( x  =  B ,  ( C H D ) ,  ( R H S ) ) )
5342, 43, 47, 52fmptco 6049 . . 3  |-  ( ph  ->  ( H  o.  (
x  e.  ( A  u.  { B }
)  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S )
>. ) )  =  ( x  e.  ( A  u.  { B }
)  |->  if ( x  =  B ,  ( C H D ) ,  ( R H S ) ) ) )
54 eqid 2443 . . . . . . . . . . 11  |-  ( x  e.  A  |->  R )  =  ( x  e.  A  |->  R )
5554, 33dmmptd 5701 . . . . . . . . . 10  |-  ( ph  ->  dom  ( x  e.  A  |->  R )  =  A )
56 limccnp2.c . . . . . . . . . . . 12  |-  ( ph  ->  C  e.  ( ( x  e.  A  |->  R ) lim CC  B ) )
57 limcrcl 22256 . . . . . . . . . . . 12  |-  ( C  e.  ( ( x  e.  A  |->  R ) lim
CC  B )  -> 
( ( x  e.  A  |->  R ) : dom  ( x  e.  A  |->  R ) --> CC 
/\  dom  ( x  e.  A  |->  R ) 
C_  CC  /\  B  e.  CC ) )
5856, 57syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( ( x  e.  A  |->  R ) : dom  ( x  e.  A  |->  R ) --> CC 
/\  dom  ( x  e.  A  |->  R ) 
C_  CC  /\  B  e.  CC ) )
5958simp2d 1010 . . . . . . . . . 10  |-  ( ph  ->  dom  ( x  e.  A  |->  R )  C_  CC )
6055, 59eqsstr3d 3524 . . . . . . . . 9  |-  ( ph  ->  A  C_  CC )
6158simp3d 1011 . . . . . . . . . 10  |-  ( ph  ->  B  e.  CC )
6261snssd 4160 . . . . . . . . 9  |-  ( ph  ->  { B }  C_  CC )
6360, 62unssd 3665 . . . . . . . 8  |-  ( ph  ->  ( A  u.  { B } )  C_  CC )
64 resttopon 19640 . . . . . . . 8  |-  ( ( K  e.  (TopOn `  CC )  /\  ( A  u.  { B } )  C_  CC )  ->  ( Kt  ( A  u.  { B }
) )  e.  (TopOn `  ( A  u.  { B } ) ) )
657, 63, 64sylancr 663 . . . . . . 7  |-  ( ph  ->  ( Kt  ( A  u.  { B } ) )  e.  (TopOn `  ( A  u.  { B } ) ) )
66 ssun2 3653 . . . . . . . 8  |-  { B }  C_  ( A  u.  { B } )
67 snssg 4148 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( B  e.  ( A  u.  { B } )  <->  { B }  C_  ( A  u.  { B } ) ) )
6861, 67syl 16 . . . . . . . 8  |-  ( ph  ->  ( B  e.  ( A  u.  { B } )  <->  { B }  C_  ( A  u.  { B } ) ) )
6966, 68mpbiri 233 . . . . . . 7  |-  ( ph  ->  B  e.  ( A  u.  { B }
) )
7010adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  X  C_  CC )
7170, 33sseldd 3490 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  R  e.  CC )
72 eqid 2443 . . . . . . . . 9  |-  ( Kt  ( A  u.  { B } ) )  =  ( Kt  ( A  u.  { B } ) )
7360, 61, 71, 72, 6limcmpt 22265 . . . . . . . 8  |-  ( ph  ->  ( C  e.  ( ( x  e.  A  |->  R ) lim CC  B
)  <->  ( x  e.  ( A  u.  { B } )  |->  if ( x  =  B ,  C ,  R )
)  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP  K ) `  B ) ) )
7456, 73mpbid 210 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( A  u.  { B } )  |->  if ( x  =  B ,  C ,  R )
)  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP  K ) `  B ) )
75 limccnp2.d . . . . . . . 8  |-  ( ph  ->  D  e.  ( ( x  e.  A  |->  S ) lim CC  B ) )
7611adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  Y  C_  CC )
7776, 38sseldd 3490 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  S  e.  CC )
7860, 61, 77, 72, 6limcmpt 22265 . . . . . . . 8  |-  ( ph  ->  ( D  e.  ( ( x  e.  A  |->  S ) lim CC  B
)  <->  ( x  e.  ( A  u.  { B } )  |->  if ( x  =  B ,  D ,  S )
)  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP  K ) `  B ) ) )
7975, 78mpbid 210 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( A  u.  { B } )  |->  if ( x  =  B ,  D ,  S )
)  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP  K ) `  B ) )
8065, 44, 44, 69, 74, 79txcnp 20099 . . . . . 6  |-  ( ph  ->  ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP  ( K  tX  K
) ) `  B
) )
819topontopi 19410 . . . . . . . 8  |-  ( K 
tX  K )  e. 
Top
8281a1i 11 . . . . . . 7  |-  ( ph  ->  ( K  tX  K
)  e.  Top )
83 eqid 2443 . . . . . . . . 9  |-  ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R
) ,  if ( x  =  B ,  D ,  S ) >. )  =  ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R
) ,  if ( x  =  B ,  D ,  S ) >. )
8442, 83fmptd 6040 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. ) : ( A  u.  { B } ) --> ( X  X.  Y ) )
85 toponuni 19406 . . . . . . . . . 10  |-  ( ( Kt  ( A  u.  { B } ) )  e.  (TopOn `  ( A  u.  { B } ) )  ->  ( A  u.  { B } )  =  U. ( Kt  ( A  u.  { B } ) ) )
8665, 85syl 16 . . . . . . . . 9  |-  ( ph  ->  ( A  u.  { B } )  =  U. ( Kt  ( A  u.  { B } ) ) )
8786feq2d 5708 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. ) : ( A  u.  { B } ) --> ( X  X.  Y )  <-> 
( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. ) : U. ( Kt  ( A  u.  { B }
) ) --> ( X  X.  Y ) ) )
8884, 87mpbid 210 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. ) : U. ( Kt  ( A  u.  { B }
) ) --> ( X  X.  Y ) )
89 eqid 2443 . . . . . . . 8  |-  U. ( Kt  ( A  u.  { B } ) )  = 
U. ( Kt  ( A  u.  { B }
) )
909toponunii 19411 . . . . . . . 8  |-  ( CC 
X.  CC )  = 
U. ( K  tX  K )
9189, 90cnprest2 19769 . . . . . . 7  |-  ( ( ( K  tX  K
)  e.  Top  /\  ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. ) : U. ( Kt  ( A  u.  { B }
) ) --> ( X  X.  Y )  /\  ( X  X.  Y
)  C_  ( CC  X.  CC ) )  -> 
( ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP  ( K  tX  K
) ) `  B
)  <->  ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP  ( ( K  tX  K )t  ( X  X.  Y ) ) ) `
 B ) ) )
9282, 88, 13, 91syl3anc 1229 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP  ( K  tX  K
) ) `  B
)  <->  ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP  ( ( K  tX  K )t  ( X  X.  Y ) ) ) `
 B ) ) )
9380, 92mpbid 210 . . . . 5  |-  ( ph  ->  ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP  ( ( K  tX  K )t  ( X  X.  Y ) ) ) `
 B ) )
945oveq2i 6292 . . . . . 6  |-  ( ( Kt  ( A  u.  { B } ) )  CnP 
J )  =  ( ( Kt  ( A  u.  { B } ) )  CnP  ( ( K 
tX  K )t  ( X  X.  Y ) ) )
9594fveq1i 5857 . . . . 5  |-  ( ( ( Kt  ( A  u.  { B } ) )  CnP  J ) `  B )  =  ( ( ( Kt  ( A  u.  { B }
) )  CnP  (
( K  tX  K
)t  ( X  X.  Y
) ) ) `  B )
9693, 95syl6eleqr 2542 . . . 4  |-  ( ph  ->  ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP 
J ) `  B
) )
97 iftrue 3932 . . . . . . . . 9  |-  ( x  =  B  ->  if ( x  =  B ,  C ,  R )  =  C )
98 iftrue 3932 . . . . . . . . 9  |-  ( x  =  B  ->  if ( x  =  B ,  D ,  S )  =  D )
9997, 98opeq12d 4210 . . . . . . . 8  |-  ( x  =  B  ->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >.  =  <. C ,  D >. )
100 opex 4701 . . . . . . . 8  |-  <. C ,  D >.  e.  _V
10199, 83, 100fvmpt 5941 . . . . . . 7  |-  ( B  e.  ( A  u.  { B } )  -> 
( ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. ) `  B )  =  <. C ,  D >. )
10269, 101syl 16 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. ) `  B )  =  <. C ,  D >. )
103102fveq2d 5860 . . . . 5  |-  ( ph  ->  ( ( J  CnP  K ) `  ( ( x  e.  ( A  u.  { B }
)  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S )
>. ) `  B ) )  =  ( ( J  CnP  K ) `
 <. C ,  D >. ) )
1041, 103eleqtrrd 2534 . . . 4  |-  ( ph  ->  H  e.  ( ( J  CnP  K ) `
 ( ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R
) ,  if ( x  =  B ,  D ,  S ) >. ) `  B ) ) )
105 cnpco 19746 . . . 4  |-  ( ( ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP 
J ) `  B
)  /\  H  e.  ( ( J  CnP  K ) `  ( ( x  e.  ( A  u.  { B }
)  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S )
>. ) `  B ) ) )  ->  ( H  o.  ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. )
)  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP  K ) `  B ) )
10696, 104, 105syl2anc 661 . . 3  |-  ( ph  ->  ( H  o.  (
x  e.  ( A  u.  { B }
)  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S )
>. ) )  e.  ( ( ( Kt  ( A  u.  { B }
) )  CnP  K
) `  B )
)
10753, 106eqeltrrd 2532 . 2  |-  ( ph  ->  ( x  e.  ( A  u.  { B } )  |->  if ( x  =  B , 
( C H D ) ,  ( R H S ) ) )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP  K ) `  B ) )
10846adantr 465 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  H : ( X  X.  Y ) --> CC )
109108, 33, 38fovrnd 6432 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( R H S )  e.  CC )
11060, 61, 109, 72, 6limcmpt 22265 . 2  |-  ( ph  ->  ( ( C H D )  e.  ( ( x  e.  A  |->  ( R H S ) ) lim CC  B
)  <->  ( x  e.  ( A  u.  { B } )  |->  if ( x  =  B , 
( C H D ) ,  ( R H S ) ) )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP  K ) `  B ) ) )
111107, 110mpbird 232 1  |-  ( ph  ->  ( C H D )  e.  ( ( x  e.  A  |->  ( R H S ) ) lim CC  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804    u. cun 3459    C_ wss 3461   ifcif 3926   {csn 4014   <.cop 4020   U.cuni 4234    |-> cmpt 4495    X. cxp 4987   dom cdm 4989    o. ccom 4993   -->wf 5574   ` cfv 5578  (class class class)co 6281   CCcc 9493   ↾t crest 14800   TopOpenctopn 14801  ℂfldccnfld 18399   Topctop 19372  TopOnctopon 19373    CnP ccnp 19704    tX ctx 20039   lim CC climc 22244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-oadd 7136  df-er 7313  df-map 7424  df-pm 7425  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-fi 7873  df-sup 7903  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10214  df-nn 10544  df-2 10601  df-3 10602  df-4 10603  df-5 10604  df-6 10605  df-7 10606  df-8 10607  df-9 10608  df-10 10609  df-n0 10803  df-z 10872  df-dec 10987  df-uz 11093  df-q 11194  df-rp 11232  df-xneg 11329  df-xadd 11330  df-xmul 11331  df-fz 11684  df-seq 12090  df-exp 12149  df-cj 12914  df-re 12915  df-im 12916  df-sqrt 13050  df-abs 13051  df-struct 14616  df-ndx 14617  df-slot 14618  df-base 14619  df-plusg 14692  df-mulr 14693  df-starv 14694  df-tset 14698  df-ple 14699  df-ds 14701  df-unif 14702  df-rest 14802  df-topn 14803  df-topgen 14823  df-psmet 18390  df-xmet 18391  df-met 18392  df-bl 18393  df-mopn 18394  df-cnfld 18400  df-top 19377  df-bases 19379  df-topon 19380  df-topsp 19381  df-cnp 19707  df-tx 20041  df-xms 20801  df-ms 20802  df-limc 22248
This theorem is referenced by:  dvcnp2  22301  dvaddbr  22319  dvmulbr  22320  dvcobr  22327  lhop1lem  22392  taylthlem2  22747
  Copyright terms: Public domain W3C validator