MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limccnp2 Structured version   Visualization version   Unicode version

Theorem limccnp2 22859
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
limccnp2.r  |-  ( (
ph  /\  x  e.  A )  ->  R  e.  X )
limccnp2.s  |-  ( (
ph  /\  x  e.  A )  ->  S  e.  Y )
limccnp2.x  |-  ( ph  ->  X  C_  CC )
limccnp2.y  |-  ( ph  ->  Y  C_  CC )
limccnp2.k  |-  K  =  ( TopOpen ` fld )
limccnp2.j  |-  J  =  ( ( K  tX  K )t  ( X  X.  Y ) )
limccnp2.c  |-  ( ph  ->  C  e.  ( ( x  e.  A  |->  R ) lim CC  B ) )
limccnp2.d  |-  ( ph  ->  D  e.  ( ( x  e.  A  |->  S ) lim CC  B ) )
limccnp2.h  |-  ( ph  ->  H  e.  ( ( J  CnP  K ) `
 <. C ,  D >. ) )
Assertion
Ref Expression
limccnp2  |-  ( ph  ->  ( C H D )  e.  ( ( x  e.  A  |->  ( R H S ) ) lim CC  B ) )
Distinct variable groups:    x, B    x, C    x, D    x, H    ph, x    x, X    x, A    x, Y
Allowed substitution hints:    R( x)    S( x)    J( x)    K( x)

Proof of Theorem limccnp2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 limccnp2.h . . . . . . . . . . 11  |-  ( ph  ->  H  e.  ( ( J  CnP  K ) `
 <. C ,  D >. ) )
2 eqid 2453 . . . . . . . . . . . 12  |-  U. J  =  U. J
32cnprcl 20273 . . . . . . . . . . 11  |-  ( H  e.  ( ( J  CnP  K ) `  <. C ,  D >. )  ->  <. C ,  D >.  e.  U. J )
41, 3syl 17 . . . . . . . . . 10  |-  ( ph  -> 
<. C ,  D >.  e. 
U. J )
5 limccnp2.j . . . . . . . . . . . 12  |-  J  =  ( ( K  tX  K )t  ( X  X.  Y ) )
6 limccnp2.k . . . . . . . . . . . . . . 15  |-  K  =  ( TopOpen ` fld )
76cnfldtopon 21815 . . . . . . . . . . . . . 14  |-  K  e.  (TopOn `  CC )
8 txtopon 20618 . . . . . . . . . . . . . 14  |-  ( ( K  e.  (TopOn `  CC )  /\  K  e.  (TopOn `  CC )
)  ->  ( K  tX  K )  e.  (TopOn `  ( CC  X.  CC ) ) )
97, 7, 8mp2an 679 . . . . . . . . . . . . 13  |-  ( K 
tX  K )  e.  (TopOn `  ( CC  X.  CC ) )
10 limccnp2.x . . . . . . . . . . . . . 14  |-  ( ph  ->  X  C_  CC )
11 limccnp2.y . . . . . . . . . . . . . 14  |-  ( ph  ->  Y  C_  CC )
12 xpss12 4943 . . . . . . . . . . . . . 14  |-  ( ( X  C_  CC  /\  Y  C_  CC )  ->  ( X  X.  Y )  C_  ( CC  X.  CC ) )
1310, 11, 12syl2anc 667 . . . . . . . . . . . . 13  |-  ( ph  ->  ( X  X.  Y
)  C_  ( CC  X.  CC ) )
14 resttopon 20189 . . . . . . . . . . . . 13  |-  ( ( ( K  tX  K
)  e.  (TopOn `  ( CC  X.  CC ) )  /\  ( X  X.  Y )  C_  ( CC  X.  CC ) )  ->  (
( K  tX  K
)t  ( X  X.  Y
) )  e.  (TopOn `  ( X  X.  Y
) ) )
159, 13, 14sylancr 670 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( K  tX  K )t  ( X  X.  Y ) )  e.  (TopOn `  ( X  X.  Y ) ) )
165, 15syl5eqel 2535 . . . . . . . . . . 11  |-  ( ph  ->  J  e.  (TopOn `  ( X  X.  Y
) ) )
17 toponuni 19954 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  ( X  X.  Y ) )  ->  ( X  X.  Y )  =  U. J )
1816, 17syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( X  X.  Y
)  =  U. J
)
194, 18eleqtrrd 2534 . . . . . . . . 9  |-  ( ph  -> 
<. C ,  D >.  e.  ( X  X.  Y
) )
20 opelxp 4867 . . . . . . . . 9  |-  ( <. C ,  D >.  e.  ( X  X.  Y
)  <->  ( C  e.  X  /\  D  e.  Y ) )
2119, 20sylib 200 . . . . . . . 8  |-  ( ph  ->  ( C  e.  X  /\  D  e.  Y
) )
2221simpld 461 . . . . . . 7  |-  ( ph  ->  C  e.  X )
2322ad2antrr 733 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( A  u.  { B } ) )  /\  x  =  B )  ->  C  e.  X )
24 simpll 761 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( A  u.  { B } ) )  /\  -.  x  =  B
)  ->  ph )
25 simpr 463 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A  u.  { B } ) )  ->  x  e.  ( A  u.  { B } ) )
26 elun 3576 . . . . . . . . . . . 12  |-  ( x  e.  ( A  u.  { B } )  <->  ( x  e.  A  \/  x  e.  { B } ) )
2725, 26sylib 200 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A  u.  { B } ) )  -> 
( x  e.  A  \/  x  e.  { B } ) )
2827ord 379 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A  u.  { B } ) )  -> 
( -.  x  e.  A  ->  x  e.  { B } ) )
29 elsni 3995 . . . . . . . . . 10  |-  ( x  e.  { B }  ->  x  =  B )
3028, 29syl6 34 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( A  u.  { B } ) )  -> 
( -.  x  e.  A  ->  x  =  B ) )
3130con1d 128 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A  u.  { B } ) )  -> 
( -.  x  =  B  ->  x  e.  A ) )
3231imp 431 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( A  u.  { B } ) )  /\  -.  x  =  B
)  ->  x  e.  A )
33 limccnp2.r . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  R  e.  X )
3424, 32, 33syl2anc 667 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( A  u.  { B } ) )  /\  -.  x  =  B
)  ->  R  e.  X )
3523, 34ifclda 3915 . . . . 5  |-  ( (
ph  /\  x  e.  ( A  u.  { B } ) )  ->  if ( x  =  B ,  C ,  R
)  e.  X )
3621simprd 465 . . . . . . 7  |-  ( ph  ->  D  e.  Y )
3736ad2antrr 733 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( A  u.  { B } ) )  /\  x  =  B )  ->  D  e.  Y )
38 limccnp2.s . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  S  e.  Y )
3924, 32, 38syl2anc 667 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( A  u.  { B } ) )  /\  -.  x  =  B
)  ->  S  e.  Y )
4037, 39ifclda 3915 . . . . 5  |-  ( (
ph  /\  x  e.  ( A  u.  { B } ) )  ->  if ( x  =  B ,  D ,  S
)  e.  Y )
41 opelxpi 4869 . . . . 5  |-  ( ( if ( x  =  B ,  C ,  R )  e.  X  /\  if ( x  =  B ,  D ,  S )  e.  Y
)  ->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >.  e.  ( X  X.  Y ) )
4235, 40, 41syl2anc 667 . . . 4  |-  ( (
ph  /\  x  e.  ( A  u.  { B } ) )  ->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S )
>.  e.  ( X  X.  Y ) )
43 eqidd 2454 . . . 4  |-  ( ph  ->  ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. )  =  ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. )
)
447a1i 11 . . . . . 6  |-  ( ph  ->  K  e.  (TopOn `  CC ) )
45 cnpf2 20278 . . . . . 6  |-  ( ( J  e.  (TopOn `  ( X  X.  Y
) )  /\  K  e.  (TopOn `  CC )  /\  H  e.  (
( J  CnP  K
) `  <. C ,  D >. ) )  ->  H : ( X  X.  Y ) --> CC )
4616, 44, 1, 45syl3anc 1269 . . . . 5  |-  ( ph  ->  H : ( X  X.  Y ) --> CC )
4746feqmptd 5923 . . . 4  |-  ( ph  ->  H  =  ( y  e.  ( X  X.  Y )  |->  ( H `
 y ) ) )
48 fveq2 5870 . . . . 5  |-  ( y  =  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S )
>.  ->  ( H `  y )  =  ( H `  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. )
)
49 df-ov 6298 . . . . . 6  |-  ( if ( x  =  B ,  C ,  R
) H if ( x  =  B ,  D ,  S )
)  =  ( H `
 <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S )
>. )
50 ovif12 6380 . . . . . 6  |-  ( if ( x  =  B ,  C ,  R
) H if ( x  =  B ,  D ,  S )
)  =  if ( x  =  B , 
( C H D ) ,  ( R H S ) )
5149, 50eqtr3i 2477 . . . . 5  |-  ( H `
 <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S )
>. )  =  if ( x  =  B ,  ( C H D ) ,  ( R H S ) )
5248, 51syl6eq 2503 . . . 4  |-  ( y  =  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S )
>.  ->  ( H `  y )  =  if ( x  =  B ,  ( C H D ) ,  ( R H S ) ) )
5342, 43, 47, 52fmptco 6061 . . 3  |-  ( ph  ->  ( H  o.  (
x  e.  ( A  u.  { B }
)  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S )
>. ) )  =  ( x  e.  ( A  u.  { B }
)  |->  if ( x  =  B ,  ( C H D ) ,  ( R H S ) ) ) )
54 eqid 2453 . . . . . . . . . . 11  |-  ( x  e.  A  |->  R )  =  ( x  e.  A  |->  R )
5554, 33dmmptd 5713 . . . . . . . . . 10  |-  ( ph  ->  dom  ( x  e.  A  |->  R )  =  A )
56 limccnp2.c . . . . . . . . . . . 12  |-  ( ph  ->  C  e.  ( ( x  e.  A  |->  R ) lim CC  B ) )
57 limcrcl 22841 . . . . . . . . . . . 12  |-  ( C  e.  ( ( x  e.  A  |->  R ) lim
CC  B )  -> 
( ( x  e.  A  |->  R ) : dom  ( x  e.  A  |->  R ) --> CC 
/\  dom  ( x  e.  A  |->  R ) 
C_  CC  /\  B  e.  CC ) )
5856, 57syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( ( x  e.  A  |->  R ) : dom  ( x  e.  A  |->  R ) --> CC 
/\  dom  ( x  e.  A  |->  R ) 
C_  CC  /\  B  e.  CC ) )
5958simp2d 1022 . . . . . . . . . 10  |-  ( ph  ->  dom  ( x  e.  A  |->  R )  C_  CC )
6055, 59eqsstr3d 3469 . . . . . . . . 9  |-  ( ph  ->  A  C_  CC )
6158simp3d 1023 . . . . . . . . . 10  |-  ( ph  ->  B  e.  CC )
6261snssd 4120 . . . . . . . . 9  |-  ( ph  ->  { B }  C_  CC )
6360, 62unssd 3612 . . . . . . . 8  |-  ( ph  ->  ( A  u.  { B } )  C_  CC )
64 resttopon 20189 . . . . . . . 8  |-  ( ( K  e.  (TopOn `  CC )  /\  ( A  u.  { B } )  C_  CC )  ->  ( Kt  ( A  u.  { B }
) )  e.  (TopOn `  ( A  u.  { B } ) ) )
657, 63, 64sylancr 670 . . . . . . 7  |-  ( ph  ->  ( Kt  ( A  u.  { B } ) )  e.  (TopOn `  ( A  u.  { B } ) ) )
66 ssun2 3600 . . . . . . . 8  |-  { B }  C_  ( A  u.  { B } )
67 snssg 4108 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( B  e.  ( A  u.  { B } )  <->  { B }  C_  ( A  u.  { B } ) ) )
6861, 67syl 17 . . . . . . . 8  |-  ( ph  ->  ( B  e.  ( A  u.  { B } )  <->  { B }  C_  ( A  u.  { B } ) ) )
6966, 68mpbiri 237 . . . . . . 7  |-  ( ph  ->  B  e.  ( A  u.  { B }
) )
7010adantr 467 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  X  C_  CC )
7170, 33sseldd 3435 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  R  e.  CC )
72 eqid 2453 . . . . . . . . 9  |-  ( Kt  ( A  u.  { B } ) )  =  ( Kt  ( A  u.  { B } ) )
7360, 61, 71, 72, 6limcmpt 22850 . . . . . . . 8  |-  ( ph  ->  ( C  e.  ( ( x  e.  A  |->  R ) lim CC  B
)  <->  ( x  e.  ( A  u.  { B } )  |->  if ( x  =  B ,  C ,  R )
)  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP  K ) `  B ) ) )
7456, 73mpbid 214 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( A  u.  { B } )  |->  if ( x  =  B ,  C ,  R )
)  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP  K ) `  B ) )
75 limccnp2.d . . . . . . . 8  |-  ( ph  ->  D  e.  ( ( x  e.  A  |->  S ) lim CC  B ) )
7611adantr 467 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  Y  C_  CC )
7776, 38sseldd 3435 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  S  e.  CC )
7860, 61, 77, 72, 6limcmpt 22850 . . . . . . . 8  |-  ( ph  ->  ( D  e.  ( ( x  e.  A  |->  S ) lim CC  B
)  <->  ( x  e.  ( A  u.  { B } )  |->  if ( x  =  B ,  D ,  S )
)  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP  K ) `  B ) ) )
7975, 78mpbid 214 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( A  u.  { B } )  |->  if ( x  =  B ,  D ,  S )
)  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP  K ) `  B ) )
8065, 44, 44, 69, 74, 79txcnp 20647 . . . . . 6  |-  ( ph  ->  ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP  ( K  tX  K
) ) `  B
) )
819topontopi 19958 . . . . . . . 8  |-  ( K 
tX  K )  e. 
Top
8281a1i 11 . . . . . . 7  |-  ( ph  ->  ( K  tX  K
)  e.  Top )
83 eqid 2453 . . . . . . . . 9  |-  ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R
) ,  if ( x  =  B ,  D ,  S ) >. )  =  ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R
) ,  if ( x  =  B ,  D ,  S ) >. )
8442, 83fmptd 6051 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. ) : ( A  u.  { B } ) --> ( X  X.  Y ) )
85 toponuni 19954 . . . . . . . . . 10  |-  ( ( Kt  ( A  u.  { B } ) )  e.  (TopOn `  ( A  u.  { B } ) )  ->  ( A  u.  { B } )  =  U. ( Kt  ( A  u.  { B } ) ) )
8665, 85syl 17 . . . . . . . . 9  |-  ( ph  ->  ( A  u.  { B } )  =  U. ( Kt  ( A  u.  { B } ) ) )
8786feq2d 5720 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. ) : ( A  u.  { B } ) --> ( X  X.  Y )  <-> 
( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. ) : U. ( Kt  ( A  u.  { B }
) ) --> ( X  X.  Y ) ) )
8884, 87mpbid 214 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. ) : U. ( Kt  ( A  u.  { B }
) ) --> ( X  X.  Y ) )
89 eqid 2453 . . . . . . . 8  |-  U. ( Kt  ( A  u.  { B } ) )  = 
U. ( Kt  ( A  u.  { B }
) )
909toponunii 19959 . . . . . . . 8  |-  ( CC 
X.  CC )  = 
U. ( K  tX  K )
9189, 90cnprest2 20318 . . . . . . 7  |-  ( ( ( K  tX  K
)  e.  Top  /\  ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. ) : U. ( Kt  ( A  u.  { B }
) ) --> ( X  X.  Y )  /\  ( X  X.  Y
)  C_  ( CC  X.  CC ) )  -> 
( ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP  ( K  tX  K
) ) `  B
)  <->  ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP  ( ( K  tX  K )t  ( X  X.  Y ) ) ) `
 B ) ) )
9282, 88, 13, 91syl3anc 1269 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP  ( K  tX  K
) ) `  B
)  <->  ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP  ( ( K  tX  K )t  ( X  X.  Y ) ) ) `
 B ) ) )
9380, 92mpbid 214 . . . . 5  |-  ( ph  ->  ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP  ( ( K  tX  K )t  ( X  X.  Y ) ) ) `
 B ) )
945oveq2i 6306 . . . . . 6  |-  ( ( Kt  ( A  u.  { B } ) )  CnP 
J )  =  ( ( Kt  ( A  u.  { B } ) )  CnP  ( ( K 
tX  K )t  ( X  X.  Y ) ) )
9594fveq1i 5871 . . . . 5  |-  ( ( ( Kt  ( A  u.  { B } ) )  CnP  J ) `  B )  =  ( ( ( Kt  ( A  u.  { B }
) )  CnP  (
( K  tX  K
)t  ( X  X.  Y
) ) ) `  B )
9693, 95syl6eleqr 2542 . . . 4  |-  ( ph  ->  ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP 
J ) `  B
) )
97 iftrue 3889 . . . . . . . . 9  |-  ( x  =  B  ->  if ( x  =  B ,  C ,  R )  =  C )
98 iftrue 3889 . . . . . . . . 9  |-  ( x  =  B  ->  if ( x  =  B ,  D ,  S )  =  D )
9997, 98opeq12d 4177 . . . . . . . 8  |-  ( x  =  B  ->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >.  =  <. C ,  D >. )
100 opex 4667 . . . . . . . 8  |-  <. C ,  D >.  e.  _V
10199, 83, 100fvmpt 5953 . . . . . . 7  |-  ( B  e.  ( A  u.  { B } )  -> 
( ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. ) `  B )  =  <. C ,  D >. )
10269, 101syl 17 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. ) `  B )  =  <. C ,  D >. )
103102fveq2d 5874 . . . . 5  |-  ( ph  ->  ( ( J  CnP  K ) `  ( ( x  e.  ( A  u.  { B }
)  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S )
>. ) `  B ) )  =  ( ( J  CnP  K ) `
 <. C ,  D >. ) )
1041, 103eleqtrrd 2534 . . . 4  |-  ( ph  ->  H  e.  ( ( J  CnP  K ) `
 ( ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R
) ,  if ( x  =  B ,  D ,  S ) >. ) `  B ) ) )
105 cnpco 20295 . . . 4  |-  ( ( ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP 
J ) `  B
)  /\  H  e.  ( ( J  CnP  K ) `  ( ( x  e.  ( A  u.  { B }
)  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S )
>. ) `  B ) ) )  ->  ( H  o.  ( x  e.  ( A  u.  { B } )  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S ) >. )
)  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP  K ) `  B ) )
10696, 104, 105syl2anc 667 . . 3  |-  ( ph  ->  ( H  o.  (
x  e.  ( A  u.  { B }
)  |->  <. if ( x  =  B ,  C ,  R ) ,  if ( x  =  B ,  D ,  S )
>. ) )  e.  ( ( ( Kt  ( A  u.  { B }
) )  CnP  K
) `  B )
)
10753, 106eqeltrrd 2532 . 2  |-  ( ph  ->  ( x  e.  ( A  u.  { B } )  |->  if ( x  =  B , 
( C H D ) ,  ( R H S ) ) )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP  K ) `  B ) )
10846adantr 467 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  H : ( X  X.  Y ) --> CC )
109108, 33, 38fovrnd 6446 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( R H S )  e.  CC )
11060, 61, 109, 72, 6limcmpt 22850 . 2  |-  ( ph  ->  ( ( C H D )  e.  ( ( x  e.  A  |->  ( R H S ) ) lim CC  B
)  <->  ( x  e.  ( A  u.  { B } )  |->  if ( x  =  B , 
( C H D ) ,  ( R H S ) ) )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP  K ) `  B ) ) )
111107, 110mpbird 236 1  |-  ( ph  ->  ( C H D )  e.  ( ( x  e.  A  |->  ( R H S ) ) lim CC  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371    /\ w3a 986    = wceq 1446    e. wcel 1889    u. cun 3404    C_ wss 3406   ifcif 3883   {csn 3970   <.cop 3976   U.cuni 4201    |-> cmpt 4464    X. cxp 4835   dom cdm 4837    o. ccom 4841   -->wf 5581   ` cfv 5585  (class class class)co 6295   CCcc 9542   ↾t crest 15331   TopOpenctopn 15332  ℂfldccnfld 18982   Topctop 19929  TopOnctopon 19930    CnP ccnp 20253    tX ctx 20587   lim CC climc 22829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-rep 4518  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588  ax-cnex 9600  ax-resscn 9601  ax-1cn 9602  ax-icn 9603  ax-addcl 9604  ax-addrcl 9605  ax-mulcl 9606  ax-mulrcl 9607  ax-mulcom 9608  ax-addass 9609  ax-mulass 9610  ax-distr 9611  ax-i2m1 9612  ax-1ne0 9613  ax-1rid 9614  ax-rnegex 9615  ax-rrecex 9616  ax-cnre 9617  ax-pre-lttri 9618  ax-pre-lttrn 9619  ax-pre-ltadd 9620  ax-pre-mulgt0 9621  ax-pre-sup 9622
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-nel 2627  df-ral 2744  df-rex 2745  df-reu 2746  df-rmo 2747  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-tp 3975  df-op 3977  df-uni 4202  df-int 4238  df-iun 4283  df-br 4406  df-opab 4465  df-mpt 4466  df-tr 4501  df-eprel 4748  df-id 4752  df-po 4758  df-so 4759  df-fr 4796  df-we 4798  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 5383  df-ord 5429  df-on 5430  df-lim 5431  df-suc 5432  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-riota 6257  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6698  df-1st 6798  df-2nd 6799  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-1o 7187  df-oadd 7191  df-er 7368  df-map 7479  df-pm 7480  df-en 7575  df-dom 7576  df-sdom 7577  df-fin 7578  df-fi 7930  df-sup 7961  df-inf 7962  df-pnf 9682  df-mnf 9683  df-xr 9684  df-ltxr 9685  df-le 9686  df-sub 9867  df-neg 9868  df-div 10277  df-nn 10617  df-2 10675  df-3 10676  df-4 10677  df-5 10678  df-6 10679  df-7 10680  df-8 10681  df-9 10682  df-10 10683  df-n0 10877  df-z 10945  df-dec 11059  df-uz 11167  df-q 11272  df-rp 11310  df-xneg 11416  df-xadd 11417  df-xmul 11418  df-fz 11792  df-seq 12221  df-exp 12280  df-cj 13174  df-re 13175  df-im 13176  df-sqrt 13310  df-abs 13311  df-struct 15135  df-ndx 15136  df-slot 15137  df-base 15138  df-plusg 15215  df-mulr 15216  df-starv 15217  df-tset 15221  df-ple 15222  df-ds 15224  df-unif 15225  df-rest 15333  df-topn 15334  df-topgen 15354  df-psmet 18974  df-xmet 18975  df-met 18976  df-bl 18977  df-mopn 18978  df-cnfld 18983  df-top 19933  df-bases 19934  df-topon 19935  df-topsp 19936  df-cnp 20256  df-tx 20589  df-xms 21347  df-ms 21348  df-limc 22833
This theorem is referenced by:  dvcnp2  22886  dvaddbr  22904  dvmulbr  22905  dvcobr  22912  lhop1lem  22977  taylthlem2  23341
  Copyright terms: Public domain W3C validator