MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lidlss Structured version   Unicode version

Theorem lidlss 17269
Description: An ideal is a subset of the base set. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
lidlss.b  |-  B  =  ( Base `  W
)
lidlss.i  |-  I  =  (LIdeal `  W )
Assertion
Ref Expression
lidlss  |-  ( U  e.  I  ->  U  C_  B )

Proof of Theorem lidlss
StepHypRef Expression
1 lidlss.b . . 3  |-  B  =  ( Base `  W
)
2 rlmbas 17254 . . 3  |-  ( Base `  W )  =  (
Base `  (ringLMod `  W
) )
31, 2eqtri 2461 . 2  |-  B  =  ( Base `  (ringLMod `  W ) )
4 lidlss.i . . 3  |-  I  =  (LIdeal `  W )
5 lidlval 17251 . . 3  |-  (LIdeal `  W )  =  (
LSubSp `  (ringLMod `  W
) )
64, 5eqtri 2461 . 2  |-  I  =  ( LSubSp `  (ringLMod `  W
) )
73, 6lssss 16996 1  |-  ( U  e.  I  ->  U  C_  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 1761    C_ wss 3325   ` cfv 5415   Basecbs 14170   LSubSpclss 16991  ringLModcrglmod 17228  LIdealclidl 17229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-recs 6828  df-rdg 6862  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-sca 14250  df-vsca 14251  df-ip 14252  df-lss 16992  df-sra 17231  df-rgmod 17232  df-lidl 17233
This theorem is referenced by:  lidlssOLD  17270  lidlsubg  17275  lidlsubcl  17276  2idlcpbl  17294  zringlpirlem1  17862  zringlpirlem3  17864  zndvds  17941  ig1peu  21602  ig1pdvds  21607  ig1prsp  21608  ply1lpir  21609  hbtlem2  29405  hbtlem4  29407  hbtlem5  29409  hbtlem6  29410  hbt  29411
  Copyright terms: Public domain W3C validator