MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lidlrsppropd Structured version   Unicode version

Theorem lidlrsppropd 17290
Description: The left ideals and ring span of a ring depend only on the ring components. Here  W is expected to be either 
B (when closure is available) or  _V (when strong equality is available). (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
lidlpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
lidlpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
lidlpropd.3  |-  ( ph  ->  B  C_  W )
lidlpropd.4  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
lidlpropd.5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  e.  W )
lidlpropd.6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
Assertion
Ref Expression
lidlrsppropd  |-  ( ph  ->  ( (LIdeal `  K
)  =  (LIdeal `  L )  /\  (RSpan `  K )  =  (RSpan `  L ) ) )
Distinct variable groups:    x, y, B    x, K, y    x, L, y    ph, x, y   
x, W, y

Proof of Theorem lidlrsppropd
StepHypRef Expression
1 lidlpropd.1 . . . . 5  |-  ( ph  ->  B  =  ( Base `  K ) )
2 rlmbas 17254 . . . . 5  |-  ( Base `  K )  =  (
Base `  (ringLMod `  K
) )
31, 2syl6eq 2489 . . . 4  |-  ( ph  ->  B  =  ( Base `  (ringLMod `  K )
) )
4 lidlpropd.2 . . . . 5  |-  ( ph  ->  B  =  ( Base `  L ) )
5 rlmbas 17254 . . . . 5  |-  ( Base `  L )  =  (
Base `  (ringLMod `  L
) )
64, 5syl6eq 2489 . . . 4  |-  ( ph  ->  B  =  ( Base `  (ringLMod `  L )
) )
7 lidlpropd.3 . . . 4  |-  ( ph  ->  B  C_  W )
8 lidlpropd.4 . . . . 5  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
9 rlmplusg 17255 . . . . . 6  |-  ( +g  `  K )  =  ( +g  `  (ringLMod `  K
) )
109oveqi 6103 . . . . 5  |-  ( x ( +g  `  K
) y )  =  ( x ( +g  `  (ringLMod `  K )
) y )
11 rlmplusg 17255 . . . . . 6  |-  ( +g  `  L )  =  ( +g  `  (ringLMod `  L
) )
1211oveqi 6103 . . . . 5  |-  ( x ( +g  `  L
) y )  =  ( x ( +g  `  (ringLMod `  L )
) y )
138, 10, 123eqtr3g 2496 . . . 4  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  (ringLMod `  K )
) y )  =  ( x ( +g  `  (ringLMod `  L )
) y ) )
14 rlmvsca 17261 . . . . . 6  |-  ( .r
`  K )  =  ( .s `  (ringLMod `  K ) )
1514oveqi 6103 . . . . 5  |-  ( x ( .r `  K
) y )  =  ( x ( .s
`  (ringLMod `  K )
) y )
16 lidlpropd.5 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  e.  W )
1715, 16syl5eqelr 2526 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .s
`  (ringLMod `  K )
) y )  e.  W )
18 lidlpropd.6 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
19 rlmvsca 17261 . . . . . 6  |-  ( .r
`  L )  =  ( .s `  (ringLMod `  L ) )
2019oveqi 6103 . . . . 5  |-  ( x ( .r `  L
) y )  =  ( x ( .s
`  (ringLMod `  L )
) y )
2118, 15, 203eqtr3g 2496 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .s
`  (ringLMod `  K )
) y )  =  ( x ( .s
`  (ringLMod `  L )
) y ) )
22 baseid 14216 . . . . . . 7  |-  Base  = Slot  ( Base `  ndx )
23 eqid 2441 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
2422, 23strfvi 14210 . . . . . 6  |-  ( Base `  K )  =  (
Base `  (  _I  `  K ) )
25 rlmsca2 17260 . . . . . . 7  |-  (  _I 
`  K )  =  (Scalar `  (ringLMod `  K
) )
2625fveq2i 5691 . . . . . 6  |-  ( Base `  (  _I  `  K
) )  =  (
Base `  (Scalar `  (ringLMod `  K ) ) )
2724, 26eqtri 2461 . . . . 5  |-  ( Base `  K )  =  (
Base `  (Scalar `  (ringLMod `  K ) ) )
281, 27syl6eq 2489 . . . 4  |-  ( ph  ->  B  =  ( Base `  (Scalar `  (ringLMod `  K
) ) ) )
29 eqid 2441 . . . . . . 7  |-  ( Base `  L )  =  (
Base `  L )
3022, 29strfvi 14210 . . . . . 6  |-  ( Base `  L )  =  (
Base `  (  _I  `  L ) )
31 rlmsca2 17260 . . . . . . 7  |-  (  _I 
`  L )  =  (Scalar `  (ringLMod `  L
) )
3231fveq2i 5691 . . . . . 6  |-  ( Base `  (  _I  `  L
) )  =  (
Base `  (Scalar `  (ringLMod `  L ) ) )
3330, 32eqtri 2461 . . . . 5  |-  ( Base `  L )  =  (
Base `  (Scalar `  (ringLMod `  L ) ) )
344, 33syl6eq 2489 . . . 4  |-  ( ph  ->  B  =  ( Base `  (Scalar `  (ringLMod `  L
) ) ) )
353, 6, 7, 13, 17, 21, 28, 34lsspropd 17076 . . 3  |-  ( ph  ->  ( LSubSp `  (ringLMod `  K
) )  =  (
LSubSp `  (ringLMod `  L
) ) )
36 lidlval 17251 . . 3  |-  (LIdeal `  K )  =  (
LSubSp `  (ringLMod `  K
) )
37 lidlval 17251 . . 3  |-  (LIdeal `  L )  =  (
LSubSp `  (ringLMod `  L
) )
3835, 36, 373eqtr4g 2498 . 2  |-  ( ph  ->  (LIdeal `  K )  =  (LIdeal `  L )
)
39 fvex 5698 . . . . 5  |-  (ringLMod `  K
)  e.  _V
4039a1i 11 . . . 4  |-  ( ph  ->  (ringLMod `  K )  e.  _V )
41 fvex 5698 . . . . 5  |-  (ringLMod `  L
)  e.  _V
4241a1i 11 . . . 4  |-  ( ph  ->  (ringLMod `  L )  e.  _V )
433, 6, 7, 13, 17, 21, 28, 34, 40, 42lsppropd 17077 . . 3  |-  ( ph  ->  ( LSpan `  (ringLMod `  K
) )  =  (
LSpan `  (ringLMod `  L
) ) )
44 rspval 17252 . . 3  |-  (RSpan `  K )  =  (
LSpan `  (ringLMod `  K
) )
45 rspval 17252 . . 3  |-  (RSpan `  L )  =  (
LSpan `  (ringLMod `  L
) )
4643, 44, 453eqtr4g 2498 . 2  |-  ( ph  ->  (RSpan `  K )  =  (RSpan `  L )
)
4738, 46jca 529 1  |-  ( ph  ->  ( (LIdeal `  K
)  =  (LIdeal `  L )  /\  (RSpan `  K )  =  (RSpan `  L ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1364    e. wcel 1761   _Vcvv 2970    C_ wss 3325    _I cid 4627   ` cfv 5415  (class class class)co 6090   ndxcnx 14167   Basecbs 14170   +g cplusg 14234   .rcmulr 14235  Scalarcsca 14237   .scvsca 14238   LSubSpclss 16991   LSpanclspn 17030  ringLModcrglmod 17228  LIdealclidl 17229  RSpancrsp 17230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-recs 6828  df-rdg 6862  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-sca 14250  df-vsca 14251  df-ip 14252  df-lss 16992  df-lsp 17031  df-sra 17231  df-rgmod 17232  df-lidl 17233  df-rsp 17234
This theorem is referenced by:  crngridl  17298
  Copyright terms: Public domain W3C validator