Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpj1 Structured version   Unicode version

Theorem lhpj1 33340
Description: The join of a co-atom (hyperplane) and an element not under it is the lattice unit. (Contributed by NM, 7-Dec-2012.)
Hypotheses
Ref Expression
lhpj1.b  |-  B  =  ( Base `  K
)
lhpj1.l  |-  .<_  =  ( le `  K )
lhpj1.j  |-  .\/  =  ( join `  K )
lhpj1.u  |-  .1.  =  ( 1. `  K )
lhpj1.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
lhpj1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  -> 
( W  .\/  X
)  =  .1.  )

Proof of Theorem lhpj1
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 simpll 758 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B
)  ->  K  e.  HL )
2 simpr 462 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B
)  ->  X  e.  B )
3 lhpj1.b . . . . . 6  |-  B  =  ( Base `  K
)
4 lhpj1.h . . . . . 6  |-  H  =  ( LHyp `  K
)
53, 4lhpbase 33316 . . . . 5  |-  ( W  e.  H  ->  W  e.  B )
65ad2antlr 731 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B
)  ->  W  e.  B )
7 lhpj1.l . . . . 5  |-  .<_  =  ( le `  K )
8 eqid 2420 . . . . 5  |-  ( Atoms `  K )  =  (
Atoms `  K )
93, 7, 8hlrelat2 32721 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  W  e.  B )  ->  ( -.  X  .<_  W  <->  E. p  e.  ( Atoms `  K ) ( p  .<_  X  /\  -.  p  .<_  W ) ) )
101, 2, 6, 9syl3anc 1264 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B
)  ->  ( -.  X  .<_  W  <->  E. p  e.  ( Atoms `  K )
( p  .<_  X  /\  -.  p  .<_  W ) ) )
11 simp1l 1029 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
12 simp2 1006 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  p  e.  ( Atoms `  K )
)
13 simp3r 1034 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  -.  p  .<_  W )
14 lhpj1.j . . . . . . . 8  |-  .\/  =  ( join `  K )
15 lhpj1.u . . . . . . . 8  |-  .1.  =  ( 1. `  K )
167, 14, 15, 8, 4lhpjat1 33338 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  ( Atoms `  K )  /\  -.  p  .<_  W ) )  ->  ( W  .\/  p )  =  .1.  )
1711, 12, 13, 16syl12anc 1262 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  ( W  .\/  p )  =  .1.  )
18 simp3l 1033 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  p  .<_  X )
19 simp1ll 1068 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  K  e.  HL )
20 hllat 32682 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  Lat )
2119, 20syl 17 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  K  e.  Lat )
223, 8atbase 32608 . . . . . . . . 9  |-  ( p  e.  ( Atoms `  K
)  ->  p  e.  B )
23223ad2ant2 1027 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  p  e.  B )
24 simp1r 1030 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  X  e.  B )
2563ad2ant1 1026 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  W  e.  B )
263, 7, 14latjlej2 16264 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( p  e.  B  /\  X  e.  B  /\  W  e.  B
) )  ->  (
p  .<_  X  ->  ( W  .\/  p )  .<_  ( W  .\/  X ) ) )
2721, 23, 24, 25, 26syl13anc 1266 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  ( p  .<_  X  ->  ( W  .\/  p )  .<_  ( W 
.\/  X ) ) )
2818, 27mpd 15 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  ( W  .\/  p )  .<_  ( W 
.\/  X ) )
2917, 28eqbrtrrd 4439 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  .1.  .<_  ( W 
.\/  X ) )
30 hlop 32681 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  OP )
3119, 30syl 17 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  K  e.  OP )
323, 14latjcl 16249 . . . . . . 7  |-  ( ( K  e.  Lat  /\  W  e.  B  /\  X  e.  B )  ->  ( W  .\/  X
)  e.  B )
3321, 25, 24, 32syl3anc 1264 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  ( W  .\/  X )  e.  B
)
343, 7, 15op1le 32511 . . . . . 6  |-  ( ( K  e.  OP  /\  ( W  .\/  X )  e.  B )  -> 
(  .1.  .<_  ( W 
.\/  X )  <->  ( W  .\/  X )  =  .1.  ) )
3531, 33, 34syl2anc 665 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  (  .1.  .<_  ( W  .\/  X )  <-> 
( W  .\/  X
)  =  .1.  )
)
3629, 35mpbid 213 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  ( W  .\/  X )  =  .1.  )
3736rexlimdv3a 2917 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B
)  ->  ( E. p  e.  ( Atoms `  K ) ( p 
.<_  X  /\  -.  p  .<_  W )  ->  ( W  .\/  X )  =  .1.  ) )
3810, 37sylbid 218 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B
)  ->  ( -.  X  .<_  W  ->  ( W  .\/  X )  =  .1.  ) )
3938impr 623 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  -> 
( W  .\/  X
)  =  .1.  )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1867   E.wrex 2774   class class class wbr 4417   ` cfv 5592  (class class class)co 6296   Basecbs 15081   lecple 15157   joincjn 16141   1.cp1 16236   Latclat 16243   OPcops 32491   Atomscatm 32582   HLchlt 32669   LHypclh 33302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-rep 4529  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-rex 2779  df-reu 2780  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-op 4000  df-uni 4214  df-iun 4295  df-br 4418  df-opab 4476  df-mpt 4477  df-id 4760  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-riota 6258  df-ov 6299  df-oprab 6300  df-preset 16125  df-poset 16143  df-plt 16156  df-lub 16172  df-glb 16173  df-join 16174  df-meet 16175  df-p0 16237  df-p1 16238  df-lat 16244  df-clat 16306  df-oposet 32495  df-ol 32497  df-oml 32498  df-covers 32585  df-ats 32586  df-atl 32617  df-cvlat 32641  df-hlat 32670  df-lhyp 33306
This theorem is referenced by:  lhpmcvr  33341  cdleme30a  33698
  Copyright terms: Public domain W3C validator