Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpexnle Structured version   Unicode version

Theorem lhpexnle 33662
Description: There exists an atom not under a co-atom. (Contributed by NM, 12-Apr-2013.)
Hypotheses
Ref Expression
lhp2a.l  |-  .<_  =  ( le `  K )
lhp2a.a  |-  A  =  ( Atoms `  K )
lhp2a.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
lhpexnle  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  A  -.  p  .<_  W )
Distinct variable groups:    A, p    H, p    K, p    .<_ , p    W, p

Proof of Theorem lhpexnle
StepHypRef Expression
1 eqid 2443 . . . 4  |-  ( 1.
`  K )  =  ( 1. `  K
)
2 eqid 2443 . . . 4  |-  (  <o  `  K )  =  ( 
<o  `  K )
3 lhp2a.h . . . 4  |-  H  =  ( LHyp `  K
)
41, 2, 3lhp1cvr 33655 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  W (  <o  `  K
) ( 1. `  K ) )
5 simpl 457 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  K  e.  HL )
6 eqid 2443 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
76, 3lhpbase 33654 . . . . 5  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
87adantl 466 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  W  e.  ( Base `  K ) )
9 hlop 33019 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  OP )
106, 1op1cl 32842 . . . . . 6  |-  ( K  e.  OP  ->  ( 1. `  K )  e.  ( Base `  K
) )
119, 10syl 16 . . . . 5  |-  ( K  e.  HL  ->  ( 1. `  K )  e.  ( Base `  K
) )
1211adantr 465 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( 1. `  K
)  e.  ( Base `  K ) )
13 lhp2a.l . . . . 5  |-  .<_  =  ( le `  K )
14 eqid 2443 . . . . 5  |-  ( join `  K )  =  (
join `  K )
15 lhp2a.a . . . . 5  |-  A  =  ( Atoms `  K )
166, 13, 14, 2, 15cvrval3 33069 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  ( Base `  K )  /\  ( 1. `  K )  e.  ( Base `  K
) )  ->  ( W (  <o  `  K
) ( 1. `  K )  <->  E. p  e.  A  ( -.  p  .<_  W  /\  ( W ( join `  K
) p )  =  ( 1. `  K
) ) ) )
175, 8, 12, 16syl3anc 1218 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( W (  <o  `  K ) ( 1.
`  K )  <->  E. p  e.  A  ( -.  p  .<_  W  /\  ( W ( join `  K
) p )  =  ( 1. `  K
) ) ) )
184, 17mpbid 210 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  A  ( -.  p  .<_  W  /\  ( W (
join `  K )
p )  =  ( 1. `  K ) ) )
19 simpl 457 . . 3  |-  ( ( -.  p  .<_  W  /\  ( W ( join `  K
) p )  =  ( 1. `  K
) )  ->  -.  p  .<_  W )
2019reximi 2835 . 2  |-  ( E. p  e.  A  ( -.  p  .<_  W  /\  ( W ( join `  K
) p )  =  ( 1. `  K
) )  ->  E. p  e.  A  -.  p  .<_  W )
2118, 20syl 16 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  A  -.  p  .<_  W )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   E.wrex 2728   class class class wbr 4304   ` cfv 5430  (class class class)co 6103   Basecbs 14186   lecple 14257   joincjn 15126   1.cp1 15220   OPcops 32829    <o ccvr 32919   Atomscatm 32920   HLchlt 33007   LHypclh 33640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-ral 2732  df-rex 2733  df-reu 2734  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-op 3896  df-uni 4104  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-id 4648  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-poset 15128  df-plt 15140  df-lub 15156  df-glb 15157  df-join 15158  df-meet 15159  df-p0 15221  df-p1 15222  df-lat 15228  df-clat 15290  df-oposet 32833  df-ol 32835  df-oml 32836  df-covers 32923  df-ats 32924  df-atl 32955  df-cvlat 32979  df-hlat 33008  df-lhyp 33644
This theorem is referenced by:  trlcnv  33821  trlator0  33827  trlid0  33832  trlnidatb  33833  cdlemf2  34218  cdlemg1cex  34244  trlco  34383  cdlemg44  34389
  Copyright terms: Public domain W3C validator