Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpexle2lem Structured version   Unicode version

Theorem lhpexle2lem 35435
Description: Lemma for lhpexle2 35436. (Contributed by NM, 19-Jun-2013.)
Hypotheses
Ref Expression
lhpex1.l  |-  .<_  =  ( le `  K )
lhpex1.a  |-  A  =  ( Atoms `  K )
lhpex1.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
lhpexle2lem  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  ->  E. p  e.  A  ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Y ) )
Distinct variable groups:    .<_ , p    A, p    H, p    K, p    W, p    X, p    Y, p

Proof of Theorem lhpexle2lem
StepHypRef Expression
1 simpl1 998 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  X  =  Y )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 lhpex1.l . . . . 5  |-  .<_  =  ( le `  K )
3 lhpex1.a . . . . 5  |-  A  =  ( Atoms `  K )
4 lhpex1.h . . . . 5  |-  H  =  ( LHyp `  K
)
52, 3, 4lhpexle1 35434 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  A  ( p  .<_  W  /\  p  =/=  X ) )
61, 5syl 16 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  X  =  Y )  ->  E. p  e.  A  ( p  .<_  W  /\  p  =/= 
X ) )
7 simp3l 1023 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  X  =  Y  /\  ( p 
.<_  W  /\  p  =/= 
X ) )  ->  p  .<_  W )
8 simp3r 1024 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  X  =  Y  /\  ( p 
.<_  W  /\  p  =/= 
X ) )  ->  p  =/=  X )
9 simp2 996 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  X  =  Y  /\  ( p 
.<_  W  /\  p  =/= 
X ) )  ->  X  =  Y )
108, 9neeqtrd 2736 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  X  =  Y  /\  ( p 
.<_  W  /\  p  =/= 
X ) )  ->  p  =/=  Y )
117, 8, 103jca 1175 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  X  =  Y  /\  ( p 
.<_  W  /\  p  =/= 
X ) )  -> 
( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Y ) )
12113expia 1197 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  X  =  Y )  ->  (
( p  .<_  W  /\  p  =/=  X )  -> 
( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Y ) ) )
1312reximdv 2915 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  X  =  Y )  ->  ( E. p  e.  A  ( p  .<_  W  /\  p  =/=  X )  ->  E. p  e.  A  ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Y ) ) )
146, 13mpd 15 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  X  =  Y )  ->  E. p  e.  A  ( p  .<_  W  /\  p  =/= 
X  /\  p  =/=  Y ) )
15 simpl1l 1046 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  X  =/= 
Y )  ->  K  e.  HL )
16 simpl2l 1048 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  X  =/= 
Y )  ->  X  e.  A )
17 simpl3l 1050 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  X  =/= 
Y )  ->  Y  e.  A )
18 simpr 461 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  X  =/= 
Y )  ->  X  =/=  Y )
19 eqid 2441 . . . . 5  |-  ( join `  K )  =  (
join `  K )
202, 19, 3hlsupr 34812 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  A  /\  Y  e.  A )  /\  X  =/=  Y
)  ->  E. p  e.  A  ( p  =/=  X  /\  p  =/= 
Y  /\  p  .<_  ( X ( join `  K
) Y ) ) )
2115, 16, 17, 18, 20syl31anc 1230 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  X  =/= 
Y )  ->  E. p  e.  A  ( p  =/=  X  /\  p  =/= 
Y  /\  p  .<_  ( X ( join `  K
) Y ) ) )
22 eqid 2441 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
23 simpl1l 1046 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  ( ( X  =/=  Y  /\  p  e.  A )  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  K  e.  HL )
24 hllat 34790 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  Lat )
2523, 24syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  ( ( X  =/=  Y  /\  p  e.  A )  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  K  e.  Lat )
26 simprlr 762 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  ( ( X  =/=  Y  /\  p  e.  A )  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  p  e.  A )
2722, 3atbase 34716 . . . . . . . . 9  |-  ( p  e.  A  ->  p  e.  ( Base `  K
) )
2826, 27syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  ( ( X  =/=  Y  /\  p  e.  A )  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  p  e.  ( Base `  K
) )
29 simpl2l 1048 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  ( ( X  =/=  Y  /\  p  e.  A )  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  X  e.  A )
30 simpl3l 1050 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  ( ( X  =/=  Y  /\  p  e.  A )  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  Y  e.  A )
3122, 19, 3hlatjcl 34793 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  X  e.  A  /\  Y  e.  A )  ->  ( X ( join `  K ) Y )  e.  ( Base `  K
) )
3223, 29, 30, 31syl3anc 1227 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  ( ( X  =/=  Y  /\  p  e.  A )  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  ( X ( join `  K
) Y )  e.  ( Base `  K
) )
33 simpl1r 1047 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  ( ( X  =/=  Y  /\  p  e.  A )  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  W  e.  H )
3422, 4lhpbase 35424 . . . . . . . . 9  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
3533, 34syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  ( ( X  =/=  Y  /\  p  e.  A )  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  W  e.  ( Base `  K
) )
36 simprr3 1045 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  ( ( X  =/=  Y  /\  p  e.  A )  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  p  .<_  ( X ( join `  K ) Y ) )
37 simpl2r 1049 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  ( ( X  =/=  Y  /\  p  e.  A )  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  X  .<_  W )
38 simpl3r 1051 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  ( ( X  =/=  Y  /\  p  e.  A )  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  Y  .<_  W )
3922, 3atbase 34716 . . . . . . . . . . 11  |-  ( X  e.  A  ->  X  e.  ( Base `  K
) )
4029, 39syl 16 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  ( ( X  =/=  Y  /\  p  e.  A )  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  X  e.  ( Base `  K
) )
4122, 3atbase 34716 . . . . . . . . . . 11  |-  ( Y  e.  A  ->  Y  e.  ( Base `  K
) )
4230, 41syl 16 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  ( ( X  =/=  Y  /\  p  e.  A )  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  Y  e.  ( Base `  K
) )
4322, 2, 19latjle12 15561 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) ) )  -> 
( ( X  .<_  W  /\  Y  .<_  W )  <-> 
( X ( join `  K ) Y ) 
.<_  W ) )
4425, 40, 42, 35, 43syl13anc 1229 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  ( ( X  =/=  Y  /\  p  e.  A )  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  (
( X  .<_  W  /\  Y  .<_  W )  <->  ( X
( join `  K ) Y )  .<_  W ) )
4537, 38, 44mpbi2and 919 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  ( ( X  =/=  Y  /\  p  e.  A )  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  ( X ( join `  K
) Y )  .<_  W )
4622, 2, 25, 28, 32, 35, 36, 45lattrd 15557 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  ( ( X  =/=  Y  /\  p  e.  A )  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  p  .<_  W )
47 simprr1 1043 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  ( ( X  =/=  Y  /\  p  e.  A )  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  p  =/=  X )
48 simprr2 1044 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  ( ( X  =/=  Y  /\  p  e.  A )  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  p  =/=  Y )
4946, 47, 483jca 1175 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  ( ( X  =/=  Y  /\  p  e.  A )  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  (
p  .<_  W  /\  p  =/=  X  /\  p  =/= 
Y ) )
5049exp44 613 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  -> 
( X  =/=  Y  ->  ( p  e.  A  ->  ( ( p  =/= 
X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) )  ->  ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Y
) ) ) ) )
5150imp31 432 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  X  =/= 
Y )  /\  p  e.  A )  ->  (
( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) )  ->  ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Y
) ) )
5251reximdva 2916 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  X  =/= 
Y )  ->  ( E. p  e.  A  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) )  ->  E. p  e.  A  ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Y ) ) )
5321, 52mpd 15 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  X  =/= 
Y )  ->  E. p  e.  A  ( p  .<_  W  /\  p  =/= 
X  /\  p  =/=  Y ) )
5414, 53pm2.61dane 2759 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  ->  E. p  e.  A  ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 972    = wceq 1381    e. wcel 1802    =/= wne 2636   E.wrex 2792   class class class wbr 4433   ` cfv 5574  (class class class)co 6277   Basecbs 14504   lecple 14576   joincjn 15442   Latclat 15544   Atomscatm 34690   HLchlt 34777   LHypclh 35410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-reu 2798  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-op 4017  df-uni 4231  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-id 4781  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-riota 6238  df-ov 6280  df-oprab 6281  df-preset 15426  df-poset 15444  df-plt 15457  df-lub 15473  df-glb 15474  df-join 15475  df-meet 15476  df-p0 15538  df-p1 15539  df-lat 15545  df-clat 15607  df-oposet 34603  df-ol 34605  df-oml 34606  df-covers 34693  df-ats 34694  df-atl 34725  df-cvlat 34749  df-hlat 34778  df-lhyp 35414
This theorem is referenced by:  lhpexle2  35436
  Copyright terms: Public domain W3C validator