Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpex2leN Structured version   Unicode version

Theorem lhpex2leN 33286
Description: There exist at least two different atoms under a co-atom. This allows us to create a line under the co-atom. TODO: is this needed? (Contributed by NM, 1-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lhp2at.l  |-  .<_  =  ( le `  K )
lhp2at.a  |-  A  =  ( Atoms `  K )
lhp2at.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
lhpex2leN  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  A  E. q  e.  A  ( p  .<_  W  /\  q  .<_  W  /\  p  =/=  q ) )
Distinct variable groups:    q, p, A    H, p, q    K, p, q    .<_ , p, q    W, p, q

Proof of Theorem lhpex2leN
StepHypRef Expression
1 simprr 764 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  A  /\  p  .<_  W ) )  ->  p  .<_  W )
2 lhp2at.l . . . . . 6  |-  .<_  =  ( le `  K )
3 lhp2at.a . . . . . 6  |-  A  =  ( Atoms `  K )
4 lhp2at.h . . . . . 6  |-  H  =  ( LHyp `  K
)
52, 3, 4lhpexle1 33281 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. q  e.  A  ( q  .<_  W  /\  q  =/=  p ) )
65adantr 466 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  A  /\  p  .<_  W ) )  ->  E. q  e.  A  ( q  .<_  W  /\  q  =/=  p ) )
71, 6jca 534 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  A  /\  p  .<_  W ) )  ->  (
p  .<_  W  /\  E. q  e.  A  (
q  .<_  W  /\  q  =/=  p ) ) )
8 necom 2700 . . . . . . 7  |-  ( p  =/=  q  <->  q  =/=  p )
983anbi3i 1198 . . . . . 6  |-  ( ( p  .<_  W  /\  q  .<_  W  /\  p  =/=  q )  <->  ( p  .<_  W  /\  q  .<_  W  /\  q  =/=  p
) )
10 3anass 986 . . . . . 6  |-  ( ( p  .<_  W  /\  q  .<_  W  /\  q  =/=  p )  <->  ( p  .<_  W  /\  ( q 
.<_  W  /\  q  =/=  p ) ) )
119, 10bitri 252 . . . . 5  |-  ( ( p  .<_  W  /\  q  .<_  W  /\  p  =/=  q )  <->  ( p  .<_  W  /\  ( q 
.<_  W  /\  q  =/=  p ) ) )
1211rexbii 2934 . . . 4  |-  ( E. q  e.  A  ( p  .<_  W  /\  q  .<_  W  /\  p  =/=  q )  <->  E. q  e.  A  ( p  .<_  W  /\  ( q 
.<_  W  /\  q  =/=  p ) ) )
13 r19.42v 2990 . . . 4  |-  ( E. q  e.  A  ( p  .<_  W  /\  ( q  .<_  W  /\  q  =/=  p ) )  <-> 
( p  .<_  W  /\  E. q  e.  A  ( q  .<_  W  /\  q  =/=  p ) ) )
1412, 13bitr2i 253 . . 3  |-  ( ( p  .<_  W  /\  E. q  e.  A  ( q  .<_  W  /\  q  =/=  p ) )  <->  E. q  e.  A  ( p  .<_  W  /\  q  .<_  W  /\  p  =/=  q ) )
157, 14sylib 199 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  A  /\  p  .<_  W ) )  ->  E. q  e.  A  ( p  .<_  W  /\  q  .<_  W  /\  p  =/=  q
) )
162, 3, 4lhpexle 33278 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  A  p  .<_  W )
1715, 16reximddv 2908 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  A  E. q  e.  A  ( p  .<_  W  /\  q  .<_  W  /\  p  =/=  q ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870    =/= wne 2625   E.wrex 2783   class class class wbr 4426   ` cfv 5601   lecple 15159   Atomscatm 32537   HLchlt 32624   LHypclh 33257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-preset 16124  df-poset 16142  df-plt 16155  df-lub 16171  df-glb 16172  df-join 16173  df-meet 16174  df-p0 16236  df-p1 16237  df-lat 16243  df-clat 16305  df-oposet 32450  df-ol 32452  df-oml 32453  df-covers 32540  df-ats 32541  df-atl 32572  df-cvlat 32596  df-hlat 32625  df-lhyp 33261
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator