Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpat Structured version   Unicode version

Theorem lhpat 35195
Description: Create an atom under a co-atom. Part of proof of Lemma B in [Crawley] p. 112. (Contributed by NM, 23-May-2012.)
Hypotheses
Ref Expression
lhpat.l  |-  .<_  =  ( le `  K )
lhpat.j  |-  .\/  =  ( join `  K )
lhpat.m  |-  ./\  =  ( meet `  K )
lhpat.a  |-  A  =  ( Atoms `  K )
lhpat.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
lhpat  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  ( ( P 
.\/  Q )  ./\  W )  e.  A )

Proof of Theorem lhpat
StepHypRef Expression
1 simp1l 1020 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  K  e.  HL )
2 simp2l 1022 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  P  e.  A
)
3 simp3l 1024 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  Q  e.  A
)
4 simp1r 1021 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  W  e.  H
)
5 eqid 2467 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
6 lhpat.h . . . 4  |-  H  =  ( LHyp `  K
)
75, 6lhpbase 35150 . . 3  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
84, 7syl 16 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  W  e.  (
Base `  K )
)
9 simp3r 1025 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  P  =/=  Q
)
10 eqid 2467 . . . 4  |-  ( 1.
`  K )  =  ( 1. `  K
)
11 eqid 2467 . . . 4  |-  (  <o  `  K )  =  ( 
<o  `  K )
1210, 11, 6lhp1cvr 35151 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  W (  <o  `  K
) ( 1. `  K ) )
13123ad2ant1 1017 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  W (  <o  `  K ) ( 1.
`  K ) )
14 simp2r 1023 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  -.  P  .<_  W )
15 lhpat.l . . 3  |-  .<_  =  ( le `  K )
16 lhpat.j . . 3  |-  .\/  =  ( join `  K )
17 lhpat.m . . 3  |-  ./\  =  ( meet `  K )
18 lhpat.a . . 3  |-  A  =  ( Atoms `  K )
195, 15, 16, 17, 10, 11, 181cvrat 34628 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  W  e.  ( Base `  K ) )  /\  ( P  =/= 
Q  /\  W (  <o  `  K ) ( 1. `  K )  /\  -.  P  .<_  W ) )  ->  (
( P  .\/  Q
)  ./\  W )  e.  A )
201, 2, 3, 8, 9, 13, 14, 19syl133anc 1251 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  ( ( P 
.\/  Q )  ./\  W )  e.  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   class class class wbr 4453   ` cfv 5594  (class class class)co 6295   Basecbs 14507   lecple 14579   joincjn 15448   meetcmee 15449   1.cp1 15542    <o ccvr 34415   Atomscatm 34416   HLchlt 34503   LHypclh 35136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-poset 15450  df-plt 15462  df-lub 15478  df-glb 15479  df-join 15480  df-meet 15481  df-p0 15543  df-p1 15544  df-lat 15550  df-clat 15612  df-oposet 34329  df-ol 34331  df-oml 34332  df-covers 34419  df-ats 34420  df-atl 34451  df-cvlat 34475  df-hlat 34504  df-lhyp 35140
This theorem is referenced by:  lhpat2  35197  4atexlemex6  35226  trlat  35321  cdlemc5  35347  cdleme3e  35384  cdleme7b  35396  cdleme11k  35420  cdleme16e  35434  cdleme16f  35435  cdlemeda  35450  cdleme22cN  35494  cdleme22d  35495  cdleme23b  35502  cdlemf2  35714  cdlemg12g  35801  cdlemg17dALTN  35816  cdlemg19a  35835
  Copyright terms: Public domain W3C validator