Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhp2atnle Structured version   Unicode version

Theorem lhp2atnle 34035
Description: Inequality for 2 different atoms under co-atom  W. (Contributed by NM, 17-Jun-2013.)
Hypotheses
Ref Expression
lhp2atnle.l  |-  .<_  =  ( le `  K )
lhp2atnle.j  |-  .\/  =  ( join `  K )
lhp2atnle.a  |-  A  =  ( Atoms `  K )
lhp2atnle.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
lhp2atnle  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  -.  V  .<_  ( P 
.\/  U ) )

Proof of Theorem lhp2atnle
StepHypRef Expression
1 simp11l 1099 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  K  e.  HL )
2 hlatl 33363 . . . 4  |-  ( K  e.  HL  ->  K  e.  AtLat )
31, 2syl 16 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  K  e.  AtLat )
4 simp3l 1016 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  V  e.  A )
5 eqid 2454 . . . 4  |-  ( 0.
`  K )  =  ( 0. `  K
)
6 lhp2atnle.a . . . 4  |-  A  =  ( Atoms `  K )
75, 6atn0 33311 . . 3  |-  ( ( K  e.  AtLat  /\  V  e.  A )  ->  V  =/=  ( 0. `  K
) )
83, 4, 7syl2anc 661 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  V  =/=  ( 0. `  K ) )
9 hllat 33366 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
101, 9syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  K  e.  Lat )
11 eqid 2454 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
1211, 6atbase 33292 . . . . . 6  |-  ( V  e.  A  ->  V  e.  ( Base `  K
) )
134, 12syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  V  e.  ( Base `  K ) )
14 simp12l 1101 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  P  e.  A )
15 simp2l 1014 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  U  e.  A )
16 lhp2atnle.j . . . . . . 7  |-  .\/  =  ( join `  K )
1711, 16, 6hlatjcl 33369 . . . . . 6  |-  ( ( K  e.  HL  /\  P  e.  A  /\  U  e.  A )  ->  ( P  .\/  U
)  e.  ( Base `  K ) )
181, 14, 15, 17syl3anc 1219 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  -> 
( P  .\/  U
)  e.  ( Base `  K ) )
19 lhp2atnle.l . . . . . 6  |-  .<_  =  ( le `  K )
20 eqid 2454 . . . . . 6  |-  ( meet `  K )  =  (
meet `  K )
2111, 19, 20latleeqm2 15372 . . . . 5  |-  ( ( K  e.  Lat  /\  V  e.  ( Base `  K )  /\  ( P  .\/  U )  e.  ( Base `  K
) )  ->  ( V  .<_  ( P  .\/  U )  <->  ( ( P 
.\/  U ) (
meet `  K ) V )  =  V ) )
2210, 13, 18, 21syl3anc 1219 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  -> 
( V  .<_  ( P 
.\/  U )  <->  ( ( P  .\/  U ) (
meet `  K ) V )  =  V ) )
23 lhp2atnle.h . . . . . 6  |-  H  =  ( LHyp `  K
)
2419, 16, 20, 5, 6, 23lhp2at0 34034 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  -> 
( ( P  .\/  U ) ( meet `  K
) V )  =  ( 0. `  K
) )
25 eqeq1 2458 . . . . 5  |-  ( ( ( P  .\/  U
) ( meet `  K
) V )  =  V  ->  ( (
( P  .\/  U
) ( meet `  K
) V )  =  ( 0. `  K
)  <->  V  =  ( 0. `  K ) ) )
2624, 25syl5ibcom 220 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  -> 
( ( ( P 
.\/  U ) (
meet `  K ) V )  =  V  ->  V  =  ( 0. `  K ) ) )
2722, 26sylbid 215 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  -> 
( V  .<_  ( P 
.\/  U )  ->  V  =  ( 0. `  K ) ) )
2827necon3ad 2662 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  -> 
( V  =/=  ( 0. `  K )  ->  -.  V  .<_  ( P 
.\/  U ) ) )
298, 28mpd 15 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  -.  V  .<_  ( P 
.\/  U ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2648   class class class wbr 4403   ` cfv 5529  (class class class)co 6203   Basecbs 14295   lecple 14367   joincjn 15236   meetcmee 15237   0.cp0 15329   Latclat 15337   Atomscatm 33266   AtLatcal 33267   HLchlt 33353   LHypclh 33986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-iin 4285  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-1st 6690  df-2nd 6691  df-poset 15238  df-plt 15250  df-lub 15266  df-glb 15267  df-join 15268  df-meet 15269  df-p0 15331  df-lat 15338  df-clat 15400  df-oposet 33179  df-ol 33181  df-oml 33182  df-covers 33269  df-ats 33270  df-atl 33301  df-cvlat 33325  df-hlat 33354  df-psubsp 33505  df-pmap 33506  df-padd 33798  df-lhyp 33990
This theorem is referenced by:  lhp2atne  34036  lhp2at0nle  34037  cdlemg27a  34694  cdlemg31c  34701  cdlemh  34819  cdlemk12  34852  cdlemk12u  34874
  Copyright terms: Public domain W3C validator