MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lhop1 Structured version   Unicode version

Theorem lhop1 22150
Description: L'Hôpital's Rule for limits from the right. If  F and  G are differentiable real functions on  ( A ,  B ), and 
F and  G both approach 0 at  A, and  G ( x ) and  G'  ( x ) are not zero on  ( A ,  B ), and the limit of  F'  ( x )  /  G'  ( x ) at  A is  C, then the limit  F ( x )  /  G ( x ) at  A also exists and equals  C. (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
lhop1.a  |-  ( ph  ->  A  e.  RR )
lhop1.b  |-  ( ph  ->  B  e.  RR* )
lhop1.l  |-  ( ph  ->  A  <  B )
lhop1.f  |-  ( ph  ->  F : ( A (,) B ) --> RR )
lhop1.g  |-  ( ph  ->  G : ( A (,) B ) --> RR )
lhop1.if  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
lhop1.ig  |-  ( ph  ->  dom  ( RR  _D  G )  =  ( A (,) B ) )
lhop1.f0  |-  ( ph  ->  0  e.  ( F lim
CC  A ) )
lhop1.g0  |-  ( ph  ->  0  e.  ( G lim
CC  A ) )
lhop1.gn0  |-  ( ph  ->  -.  0  e.  ran  G )
lhop1.gd0  |-  ( ph  ->  -.  0  e.  ran  ( RR  _D  G
) )
lhop1.c  |-  ( ph  ->  C  e.  ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) lim CC  A ) )
Assertion
Ref Expression
lhop1  |-  ( ph  ->  C  e.  ( ( z  e.  ( A (,) B )  |->  ( ( F `  z
)  /  ( G `
 z ) ) ) lim CC  A ) )
Distinct variable groups:    z, B    ph, z    z, A    z, C    z, F    z, G

Proof of Theorem lhop1
Dummy variables  e 
d  r  v  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lhop1.c . 2  |-  ( ph  ->  C  e.  ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) lim CC  A ) )
2 simpr 461 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
32rphalfcld 11264 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  /  2 )  e.  RR+ )
4 breq2 4451 . . . . . . . . . 10  |-  ( e  =  ( x  / 
2 )  ->  (
( abs `  (
( ( z  e.  ( A (,) B
)  |->  ( ( ( RR  _D  F ) `
 z )  / 
( ( RR  _D  G ) `  z
) ) ) `  y )  -  C
) )  <  e  <->  ( abs `  ( ( ( z  e.  ( A (,) B ) 
|->  ( ( ( RR 
_D  F ) `  z )  /  (
( RR  _D  G
) `  z )
) ) `  y
)  -  C ) )  <  ( x  /  2 ) ) )
54imbi2d 316 . . . . . . . . 9  |-  ( e  =  ( x  / 
2 )  ->  (
( ( y  =/= 
A  /\  ( abs `  ( y  -  A
) )  <  d
)  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F
) `  z )  /  ( ( RR 
_D  G ) `  z ) ) ) `
 y )  -  C ) )  < 
e )  <->  ( (
y  =/=  A  /\  ( abs `  ( y  -  A ) )  <  d )  -> 
( abs `  (
( ( z  e.  ( A (,) B
)  |->  ( ( ( RR  _D  F ) `
 z )  / 
( ( RR  _D  G ) `  z
) ) ) `  y )  -  C
) )  <  (
x  /  2 ) ) ) )
65rexralbidv 2981 . . . . . . . 8  |-  ( e  =  ( x  / 
2 )  ->  ( E. d  e.  RR+  A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  e )  <->  E. d  e.  RR+  A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  ( x  / 
2 ) ) ) )
76rspcv 3210 . . . . . . 7  |-  ( ( x  /  2 )  e.  RR+  ->  ( A. e  e.  RR+  E. d  e.  RR+  A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  e )  ->  E. d  e.  RR+  A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  ( x  / 
2 ) ) ) )
83, 7syl 16 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( A. e  e.  RR+  E. d  e.  RR+  A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  e )  ->  E. d  e.  RR+  A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  ( x  / 
2 ) ) ) )
9 rabid 3038 . . . . . . . . . . . . . 14  |-  ( v  e.  { v  e.  ( A (,) B
)  |  ( abs `  ( v  -  A
) )  <  d } 
<->  ( v  e.  ( A (,) B )  /\  ( abs `  (
v  -  A ) )  <  d ) )
10 eliooord 11580 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( v  e.  ( A (,) B )  ->  ( A  <  v  /\  v  <  B ) )
1110adantl 466 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
( A  <  v  /\  v  <  B ) )
1211simprd 463 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
v  <  B )
1312biantrurd 508 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
( v  <  (
d  +  A )  <-> 
( v  <  B  /\  v  <  ( d  +  A ) ) ) )
14 ioossre 11582 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A (,) B )  C_  RR
15 simpr 461 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
v  e.  ( A (,) B ) )
1614, 15sseldi 3502 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
v  e.  RR )
17 lhop1.a . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  A  e.  RR )
1817ad3antrrr 729 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  ->  A  e.  RR )
19 simpr 461 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  ->  d  e.  RR+ )
2019rpred 11252 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  ->  d  e.  RR )
2120adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
d  e.  RR )
2216, 18, 21ltsubaddd 10144 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
( ( v  -  A )  <  d  <->  v  <  ( d  +  A ) ) )
2316rexrd 9639 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
v  e.  RR* )
24 lhop1.b . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  B  e.  RR* )
2524ad3antrrr 729 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  ->  B  e.  RR* )
2617ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  ->  A  e.  RR )
2720, 26readdcld 9619 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  ->  (
d  +  A )  e.  RR )
2827rexrd 9639 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  ->  (
d  +  A )  e.  RR* )
2928adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
( d  +  A
)  e.  RR* )
30 xrltmin 11379 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( v  e.  RR*  /\  B  e.  RR*  /\  ( d  +  A )  e. 
RR* )  ->  (
v  <  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  <->  ( v  <  B  /\  v  < 
( d  +  A
) ) ) )
3123, 25, 29, 30syl3anc 1228 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
( v  <  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  <-> 
( v  <  B  /\  v  <  ( d  +  A ) ) ) )
3213, 22, 313bitr4rd 286 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
( v  <  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  <-> 
( v  -  A
)  <  d )
)
3318rexrd 9639 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  ->  A  e.  RR* )
34 ifcl 3981 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  e.  RR*  /\  (
d  +  A )  e.  RR* )  ->  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  e.  RR* )
3525, 29, 34syl2anc 661 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  ->  if ( B  <_  (
d  +  A ) ,  B ,  ( d  +  A ) )  e.  RR* )
3611simpld 459 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  ->  A  <  v )
37 elioo5 11578 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  RR*  /\  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  e.  RR*  /\  v  e.  RR* )  ->  (
v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) )  <-> 
( A  <  v  /\  v  <  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ) )
3837baibd 907 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  RR*  /\  if ( B  <_ 
( d  +  A
) ,  B , 
( d  +  A
) )  e.  RR*  /\  v  e.  RR* )  /\  A  <  v )  ->  ( v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) )  <->  v  <  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )
3933, 35, 23, 36, 38syl31anc 1231 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
( v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) )  <-> 
v  <  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )
4018, 16, 36ltled 9728 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  ->  A  <_  v )
4118, 16, 40abssubge0d 13222 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
( abs `  (
v  -  A ) )  =  ( v  -  A ) )
4241breq1d 4457 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
( ( abs `  (
v  -  A ) )  <  d  <->  ( v  -  A )  <  d
) )
4332, 39, 423bitr4d 285 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
( v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) )  <-> 
( abs `  (
v  -  A ) )  <  d ) )
4443rabbi2dva 3706 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  ->  (
( A (,) B
)  i^i  ( A (,) if ( B  <_ 
( d  +  A
) ,  B , 
( d  +  A
) ) ) )  =  { v  e.  ( A (,) B
)  |  ( abs `  ( v  -  A
) )  <  d } )
4524ad2antrr 725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  ->  B  e.  RR* )
46 xrmin1 11374 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  RR*  /\  (
d  +  A )  e.  RR* )  ->  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  <_  B )
4745, 28, 46syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  ->  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  <_  B )
48 iooss2 11561 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  RR*  /\  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  <_  B )  -> 
( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) )  C_  ( A (,) B ) )
4945, 47, 48syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  ->  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) 
C_  ( A (,) B ) )
50 dfss1 3703 . . . . . . . . . . . . . . . . 17  |-  ( ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) 
C_  ( A (,) B )  <->  ( ( A (,) B )  i^i  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  =  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )
5149, 50sylib 196 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  ->  (
( A (,) B
)  i^i  ( A (,) if ( B  <_ 
( d  +  A
) ,  B , 
( d  +  A
) ) ) )  =  ( A (,) if ( B  <_  (
d  +  A ) ,  B ,  ( d  +  A ) ) ) )
5244, 51eqtr3d 2510 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  ->  { v  e.  ( A (,) B )  |  ( abs `  ( v  -  A ) )  <  d }  =  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )
5352eleq2d 2537 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  ->  (
v  e.  { v  e.  ( A (,) B )  |  ( abs `  ( v  -  A ) )  <  d }  <->  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ) )
549, 53syl5bbr 259 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  ->  (
( v  e.  ( A (,) B )  /\  ( abs `  (
v  -  A ) )  <  d )  <-> 
v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ) )
55 lbioo 11556 . . . . . . . . . . . . . . . . . . . . . 22  |-  -.  A  e.  ( A (,) B
)
56 eleq1 2539 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  A  ->  (
y  e.  ( A (,) B )  <->  A  e.  ( A (,) B ) ) )
5755, 56mtbiri 303 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  A  ->  -.  y  e.  ( A (,) B ) )
5857necon2ai 2702 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  ( A (,) B )  ->  y  =/=  A )
5958biantrurd 508 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ( A (,) B )  ->  (
( abs `  (
y  -  A ) )  <  d  <->  ( y  =/=  A  /\  ( abs `  ( y  -  A
) )  <  d
) ) )
6059bicomd 201 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( A (,) B )  ->  (
( y  =/=  A  /\  ( abs `  (
y  -  A ) )  <  d )  <-> 
( abs `  (
y  -  A ) )  <  d ) )
61 fveq2 5864 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  =  y  ->  (
( RR  _D  F
) `  z )  =  ( ( RR 
_D  F ) `  y ) )
62 fveq2 5864 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  =  y  ->  (
( RR  _D  G
) `  z )  =  ( ( RR 
_D  G ) `  y ) )
6361, 62oveq12d 6300 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  =  y  ->  (
( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) )  =  ( ( ( RR  _D  F ) `
 y )  / 
( ( RR  _D  G ) `  y
) ) )
64 eqid 2467 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F
) `  z )  /  ( ( RR 
_D  G ) `  z ) ) )  =  ( z  e.  ( A (,) B
)  |->  ( ( ( RR  _D  F ) `
 z )  / 
( ( RR  _D  G ) `  z
) ) )
65 ovex 6307 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( RR  _D  F
) `  z )  /  ( ( RR 
_D  G ) `  z ) )  e. 
_V
6663, 64, 65fvmpt3i 5952 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  ( A (,) B )  ->  (
( z  e.  ( A (,) B ) 
|->  ( ( ( RR 
_D  F ) `  z )  /  (
( RR  _D  G
) `  z )
) ) `  y
)  =  ( ( ( RR  _D  F
) `  y )  /  ( ( RR 
_D  G ) `  y ) ) )
6766oveq1d 6297 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  ( A (,) B )  ->  (
( ( z  e.  ( A (,) B
)  |->  ( ( ( RR  _D  F ) `
 z )  / 
( ( RR  _D  G ) `  z
) ) ) `  y )  -  C
)  =  ( ( ( ( RR  _D  F ) `  y
)  /  ( ( RR  _D  G ) `
 y ) )  -  C ) )
6867fveq2d 5868 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ( A (,) B )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  =  ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) ) )
6968breq1d 4457 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( A (,) B )  ->  (
( abs `  (
( ( z  e.  ( A (,) B
)  |->  ( ( ( RR  _D  F ) `
 z )  / 
( ( RR  _D  G ) `  z
) ) ) `  y )  -  C
) )  <  (
x  /  2 )  <-> 
( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )
7060, 69imbi12d 320 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( A (,) B )  ->  (
( ( y  =/= 
A  /\  ( abs `  ( y  -  A
) )  <  d
)  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F
) `  z )  /  ( ( RR 
_D  G ) `  z ) ) ) `
 y )  -  C ) )  < 
( x  /  2
) )  <->  ( ( abs `  ( y  -  A ) )  < 
d  ->  ( abs `  ( ( ( ( RR  _D  F ) `
 y )  / 
( ( RR  _D  G ) `  y
) )  -  C
) )  <  (
x  /  2 ) ) ) )
7170ralbiia 2894 . . . . . . . . . . . . . . . 16  |-  ( A. y  e.  ( A (,) B ) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  <  d )  -> 
( abs `  (
( ( z  e.  ( A (,) B
)  |->  ( ( ( RR  _D  F ) `
 z )  / 
( ( RR  _D  G ) `  z
) ) ) `  y )  -  C
) )  <  (
x  /  2 ) )  <->  A. y  e.  ( A (,) B ) ( ( abs `  (
y  -  A ) )  <  d  -> 
( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )
72 oveq1 6289 . . . . . . . . . . . . . . . . . . 19  |-  ( v  =  y  ->  (
v  -  A )  =  ( y  -  A ) )
7372fveq2d 5868 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  y  ->  ( abs `  ( v  -  A ) )  =  ( abs `  (
y  -  A ) ) )
7473breq1d 4457 . . . . . . . . . . . . . . . . 17  |-  ( v  =  y  ->  (
( abs `  (
v  -  A ) )  <  d  <->  ( abs `  ( y  -  A
) )  <  d
) )
7574ralrab 3265 . . . . . . . . . . . . . . . 16  |-  ( A. y  e.  { v  e.  ( A (,) B
)  |  ( abs `  ( v  -  A
) )  <  d }  ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 )  <->  A. y  e.  ( A (,) B
) ( ( abs `  ( y  -  A
) )  <  d  ->  ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )
7671, 75bitr4i 252 . . . . . . . . . . . . . . 15  |-  ( A. y  e.  ( A (,) B ) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  <  d )  -> 
( abs `  (
( ( z  e.  ( A (,) B
)  |->  ( ( ( RR  _D  F ) `
 z )  / 
( ( RR  _D  G ) `  z
) ) ) `  y )  -  C
) )  <  (
x  /  2 ) )  <->  A. y  e.  {
v  e.  ( A (,) B )  |  ( abs `  (
v  -  A ) )  <  d }  ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) )
7752adantrr 716 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ) )  ->  { v  e.  ( A (,) B )  |  ( abs `  (
v  -  A ) )  <  d }  =  ( A (,) if ( B  <_  (
d  +  A ) ,  B ,  ( d  +  A ) ) ) )
7877raleqdv 3064 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ) )  -> 
( A. y  e. 
{ v  e.  ( A (,) B )  |  ( abs `  (
v  -  A ) )  <  d }  ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 )  <->  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )
7917ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  A  e.  RR )
8024ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  B  e.  RR* )
81 lhop1.l . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  A  <  B )
8281ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  A  <  B )
83 lhop1.f . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  F : ( A (,) B ) --> RR )
8483ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  F :
( A (,) B
) --> RR )
85 lhop1.g . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  G : ( A (,) B ) --> RR )
8685ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  G :
( A (,) B
) --> RR )
87 lhop1.if . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
8887ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  dom  ( RR 
_D  F )  =  ( A (,) B
) )
89 lhop1.ig . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  dom  ( RR  _D  G )  =  ( A (,) B ) )
9089ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  dom  ( RR 
_D  G )  =  ( A (,) B
) )
91 lhop1.f0 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  0  e.  ( F lim
CC  A ) )
9291ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  0  e.  ( F lim CC  A ) )
93 lhop1.g0 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  0  e.  ( G lim
CC  A ) )
9493ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  0  e.  ( G lim CC  A ) )
95 lhop1.gn0 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  -.  0  e.  ran  G )
9695ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  -.  0  e.  ran  G )
97 lhop1.gd0 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  -.  0  e.  ran  ( RR  _D  G
) )
9897ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  -.  0  e.  ran  ( RR  _D  G ) )
991ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  C  e.  ( ( z  e.  ( A (,) B
)  |->  ( ( ( RR  _D  F ) `
 z )  / 
( ( RR  _D  G ) `  z
) ) ) lim CC  A ) )
1003adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  ( x  /  2 )  e.  RR+ )
10179rexrd 9639 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  A  e.  RR* )
102 simprll 761 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  d  e.  RR+ )
103102rpred 11252 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  d  e.  RR )
104103, 79readdcld 9619 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  ( d  +  A )  e.  RR )
105 iocssre 11600 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  RR*  /\  (
d  +  A )  e.  RR )  -> 
( A (,] (
d  +  A ) )  C_  RR )
106101, 104, 105syl2anc 661 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  ( A (,] ( d  +  A
) )  C_  RR )
10780adantr 465 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( ( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  /\  B  <_ 
( d  +  A
) )  ->  B  e.  RR* )
108103adantr 465 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( ( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  /\  -.  B  <_  ( d  +  A
) )  ->  d  e.  RR )
10979adantr 465 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( ( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  /\  -.  B  <_  ( d  +  A
) )  ->  A  e.  RR )
110108, 109readdcld 9619 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( ( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  /\  -.  B  <_  ( d  +  A
) )  ->  (
d  +  A )  e.  RR )
111110rexrd 9639 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( ( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  /\  -.  B  <_  ( d  +  A
) )  ->  (
d  +  A )  e.  RR* )
112107, 111ifclda 3971 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  e. 
RR* )
11379, 102ltaddrp2d 11282 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  A  <  ( d  +  A ) )
114104rexrd 9639 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  ( d  +  A )  e.  RR* )
115 xrltmin 11379 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( d  +  A )  e. 
RR* )  ->  ( A  <  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  <->  ( A  <  B  /\  A  < 
( d  +  A
) ) ) )
116101, 80, 114, 115syl3anc 1228 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  ( A  <  if ( B  <_ 
( d  +  A
) ,  B , 
( d  +  A
) )  <->  ( A  <  B  /\  A  < 
( d  +  A
) ) ) )
11782, 113, 116mpbir2and 920 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  A  <  if ( B  <_  (
d  +  A ) ,  B ,  ( d  +  A ) ) )
118 xrmin2 11375 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( B  e.  RR*  /\  (
d  +  A )  e.  RR* )  ->  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  <_  ( d  +  A ) )
11980, 114, 118syl2anc 661 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  <_ 
( d  +  A
) )
120 elioc1 11567 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  RR*  /\  (
d  +  A )  e.  RR* )  ->  ( if ( B  <_  (
d  +  A ) ,  B ,  ( d  +  A ) )  e.  ( A (,] ( d  +  A ) )  <->  ( if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  e.  RR*  /\  A  < 
if ( B  <_ 
( d  +  A
) ,  B , 
( d  +  A
) )  /\  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  <_  ( d  +  A ) ) ) )
121101, 114, 120syl2anc 661 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  ( if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  e.  ( A (,] ( d  +  A
) )  <->  ( if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  e.  RR*  /\  A  < 
if ( B  <_ 
( d  +  A
) ,  B , 
( d  +  A
) )  /\  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  <_  ( d  +  A ) ) ) )
122112, 117, 119, 121mpbir3and 1179 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  e.  ( A (,] (
d  +  A ) ) )
123106, 122sseldd 3505 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  e.  RR )
12480, 114, 46syl2anc 661 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  <_  B )
125 simprlr 762 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )
126 simprr 756 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) )
127 eqid 2467 . . . . . . . . . . . . . . . . . . 19  |-  ( A  +  ( r  / 
2 ) )  =  ( A  +  ( r  /  2 ) )
12879, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 99, 100, 123, 124, 125, 126, 127lhop1lem 22149 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  ( abs `  ( ( ( F `
 v )  / 
( G `  v
) )  -  C
) )  <  (
2  x.  ( x  /  2 ) ) )
1292rpcnd 11254 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  CC )
130 2cnd 10604 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  RR+ )  ->  2  e.  CC )
131 2ne0 10624 . . . . . . . . . . . . . . . . . . . . 21  |-  2  =/=  0
132131a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  RR+ )  ->  2  =/=  0 )
133129, 130, 132divcan2d 10318 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 2  x.  ( x  / 
2 ) )  =  x )
134133adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  ( 2  x.  ( x  / 
2 ) )  =  x )
135128, 134breqtrd 4471 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  ( abs `  ( ( ( F `
 v )  / 
( G `  v
) )  -  C
) )  <  x
)
136135expr 615 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ) )  -> 
( A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 )  -> 
( abs `  (
( ( F `  v )  /  ( G `  v )
)  -  C ) )  <  x ) )
13778, 136sylbid 215 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ) )  -> 
( A. y  e. 
{ v  e.  ( A (,) B )  |  ( abs `  (
v  -  A ) )  <  d }  ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 )  -> 
( abs `  (
( ( F `  v )  /  ( G `  v )
)  -  C ) )  <  x ) )
13876, 137syl5bi 217 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ) )  -> 
( A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  ( x  / 
2 ) )  -> 
( abs `  (
( ( F `  v )  /  ( G `  v )
)  -  C ) )  <  x ) )
139138expr 615 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  ->  (
v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) )  ->  ( A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  ( x  / 
2 ) )  -> 
( abs `  (
( ( F `  v )  /  ( G `  v )
)  -  C ) )  <  x ) ) )
14054, 139sylbid 215 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  ->  (
( v  e.  ( A (,) B )  /\  ( abs `  (
v  -  A ) )  <  d )  ->  ( A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  ( x  / 
2 ) )  -> 
( abs `  (
( ( F `  v )  /  ( G `  v )
)  -  C ) )  <  x ) ) )
141140expdimp 437 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
( ( abs `  (
v  -  A ) )  <  d  -> 
( A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  ( x  / 
2 ) )  -> 
( abs `  (
( ( F `  v )  /  ( G `  v )
)  -  C ) )  <  x ) ) )
142 fveq2 5864 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  v  ->  ( F `  z )  =  ( F `  v ) )
143 fveq2 5864 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  v  ->  ( G `  z )  =  ( G `  v ) )
144142, 143oveq12d 6300 . . . . . . . . . . . . . . . . 17  |-  ( z  =  v  ->  (
( F `  z
)  /  ( G `
 z ) )  =  ( ( F `
 v )  / 
( G `  v
) ) )
145 eqid 2467 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ( A (,) B )  |->  ( ( F `  z )  /  ( G `  z ) ) )  =  ( z  e.  ( A (,) B
)  |->  ( ( F `
 z )  / 
( G `  z
) ) )
146 ovex 6307 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  z )  /  ( G `  z ) )  e. 
_V
147144, 145, 146fvmpt3i 5952 . . . . . . . . . . . . . . . 16  |-  ( v  e.  ( A (,) B )  ->  (
( z  e.  ( A (,) B ) 
|->  ( ( F `  z )  /  ( G `  z )
) ) `  v
)  =  ( ( F `  v )  /  ( G `  v ) ) )
148147oveq1d 6297 . . . . . . . . . . . . . . 15  |-  ( v  e.  ( A (,) B )  ->  (
( ( z  e.  ( A (,) B
)  |->  ( ( F `
 z )  / 
( G `  z
) ) ) `  v )  -  C
)  =  ( ( ( F `  v
)  /  ( G `
 v ) )  -  C ) )
149148fveq2d 5868 . . . . . . . . . . . . . 14  |-  ( v  e.  ( A (,) B )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( F `  z
)  /  ( G `
 z ) ) ) `  v )  -  C ) )  =  ( abs `  (
( ( F `  v )  /  ( G `  v )
)  -  C ) ) )
150149breq1d 4457 . . . . . . . . . . . . 13  |-  ( v  e.  ( A (,) B )  ->  (
( abs `  (
( ( z  e.  ( A (,) B
)  |->  ( ( F `
 z )  / 
( G `  z
) ) ) `  v )  -  C
) )  <  x  <->  ( abs `  ( ( ( F `  v
)  /  ( G `
 v ) )  -  C ) )  <  x ) )
151150imbi2d 316 . . . . . . . . . . . 12  |-  ( v  e.  ( A (,) B )  ->  (
( A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  ( x  / 
2 ) )  -> 
( abs `  (
( ( z  e.  ( A (,) B
)  |->  ( ( F `
 z )  / 
( G `  z
) ) ) `  v )  -  C
) )  <  x
)  <->  ( A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  ( x  / 
2 ) )  -> 
( abs `  (
( ( F `  v )  /  ( G `  v )
)  -  C ) )  <  x ) ) )
152151adantl 466 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
( ( A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  ( x  / 
2 ) )  -> 
( abs `  (
( ( z  e.  ( A (,) B
)  |->  ( ( F `
 z )  / 
( G `  z
) ) ) `  v )  -  C
) )  <  x
)  <->  ( A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  ( x  / 
2 ) )  -> 
( abs `  (
( ( F `  v )  /  ( G `  v )
)  -  C ) )  <  x ) ) )
153141, 152sylibrd 234 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
( ( abs `  (
v  -  A ) )  <  d  -> 
( A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  ( x  / 
2 ) )  -> 
( abs `  (
( ( z  e.  ( A (,) B
)  |->  ( ( F `
 z )  / 
( G `  z
) ) ) `  v )  -  C
) )  <  x
) ) )
154153adantld 467 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
( ( v  =/= 
A  /\  ( abs `  ( v  -  A
) )  <  d
)  ->  ( A. y  e.  ( A (,) B ) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  <  d )  -> 
( abs `  (
( ( z  e.  ( A (,) B
)  |->  ( ( ( RR  _D  F ) `
 z )  / 
( ( RR  _D  G ) `  z
) ) ) `  y )  -  C
) )  <  (
x  /  2 ) )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( F `  z )  /  ( G `  z ) ) ) `
 v )  -  C ) )  < 
x ) ) )
155154com23 78 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
( A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  ( x  / 
2 ) )  -> 
( ( v  =/= 
A  /\  ( abs `  ( v  -  A
) )  <  d
)  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( F `  z )  /  ( G `  z ) ) ) `
 v )  -  C ) )  < 
x ) ) )
156155ralrimdva 2882 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  ->  ( A. y  e.  ( A (,) B ) ( ( y  =/=  A  /\  ( abs `  (
y  -  A ) )  <  d )  ->  ( abs `  (
( ( z  e.  ( A (,) B
)  |->  ( ( ( RR  _D  F ) `
 z )  / 
( ( RR  _D  G ) `  z
) ) ) `  y )  -  C
) )  <  (
x  /  2 ) )  ->  A. v  e.  ( A (,) B
) ( ( v  =/=  A  /\  ( abs `  ( v  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( F `  z
)  /  ( G `
 z ) ) ) `  v )  -  C ) )  <  x ) ) )
157156reximdva 2938 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( E. d  e.  RR+  A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  ( x  / 
2 ) )  ->  E. d  e.  RR+  A. v  e.  ( A (,) B
) ( ( v  =/=  A  /\  ( abs `  ( v  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( F `  z
)  /  ( G `
 z ) ) ) `  v )  -  C ) )  <  x ) ) )
1588, 157syld 44 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( A. e  e.  RR+  E. d  e.  RR+  A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  e )  ->  E. d  e.  RR+  A. v  e.  ( A (,) B
) ( ( v  =/=  A  /\  ( abs `  ( v  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( F `  z
)  /  ( G `
 z ) ) ) `  v )  -  C ) )  <  x ) ) )
159158ralrimdva 2882 . . . 4  |-  ( ph  ->  ( A. e  e.  RR+  E. d  e.  RR+  A. y  e.  ( A (,) B ) ( ( y  =/=  A  /\  ( abs `  (
y  -  A ) )  <  d )  ->  ( abs `  (
( ( z  e.  ( A (,) B
)  |->  ( ( ( RR  _D  F ) `
 z )  / 
( ( RR  _D  G ) `  z
) ) ) `  y )  -  C
) )  <  e
)  ->  A. x  e.  RR+  E. d  e.  RR+  A. v  e.  ( A (,) B ) ( ( v  =/= 
A  /\  ( abs `  ( v  -  A
) )  <  d
)  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( F `  z )  /  ( G `  z ) ) ) `
 v )  -  C ) )  < 
x ) ) )
160159anim2d 565 . . 3  |-  ( ph  ->  ( ( C  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. y  e.  ( A (,) B ) ( ( y  =/= 
A  /\  ( abs `  ( y  -  A
) )  <  d
)  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F
) `  z )  /  ( ( RR 
_D  G ) `  z ) ) ) `
 y )  -  C ) )  < 
e ) )  -> 
( C  e.  CC  /\ 
A. x  e.  RR+  E. d  e.  RR+  A. v  e.  ( A (,) B
) ( ( v  =/=  A  /\  ( abs `  ( v  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( F `  z
)  /  ( G `
 z ) ) ) `  v )  -  C ) )  <  x ) ) ) )
161 dvf 22046 . . . . . . . 8  |-  ( RR 
_D  F ) : dom  ( RR  _D  F ) --> CC
16287feq2d 5716 . . . . . . . 8  |-  ( ph  ->  ( ( RR  _D  F ) : dom  ( RR  _D  F
) --> CC  <->  ( RR  _D  F ) : ( A (,) B ) --> CC ) )
163161, 162mpbii 211 . . . . . . 7  |-  ( ph  ->  ( RR  _D  F
) : ( A (,) B ) --> CC )
164163ffvelrnda 6019 . . . . . 6  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  z )  e.  CC )
165 dvf 22046 . . . . . . . 8  |-  ( RR 
_D  G ) : dom  ( RR  _D  G ) --> CC
16689feq2d 5716 . . . . . . . 8  |-  ( ph  ->  ( ( RR  _D  G ) : dom  ( RR  _D  G
) --> CC  <->  ( RR  _D  G ) : ( A (,) B ) --> CC ) )
167165, 166mpbii 211 . . . . . . 7  |-  ( ph  ->  ( RR  _D  G
) : ( A (,) B ) --> CC )
168167ffvelrnda 6019 . . . . . 6  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( ( RR  _D  G ) `  z )  e.  CC )
16997adantr 465 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  -.  0  e.  ran  ( RR  _D  G ) )
170 ffn 5729 . . . . . . . . . . 11  |-  ( ( RR  _D  G ) : ( A (,) B ) --> CC  ->  ( RR  _D  G )  Fn  ( A (,) B ) )
171167, 170syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( RR  _D  G
)  Fn  ( A (,) B ) )
172 fnfvelrn 6016 . . . . . . . . . 10  |-  ( ( ( RR  _D  G
)  Fn  ( A (,) B )  /\  z  e.  ( A (,) B ) )  -> 
( ( RR  _D  G ) `  z
)  e.  ran  ( RR  _D  G ) )
173171, 172sylan 471 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( ( RR  _D  G ) `  z )  e.  ran  ( RR  _D  G
) )
174 eleq1 2539 . . . . . . . . 9  |-  ( ( ( RR  _D  G
) `  z )  =  0  ->  (
( ( RR  _D  G ) `  z
)  e.  ran  ( RR  _D  G )  <->  0  e.  ran  ( RR  _D  G
) ) )
175173, 174syl5ibcom 220 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( (
( RR  _D  G
) `  z )  =  0  ->  0  e.  ran  ( RR  _D  G ) ) )
176175necon3bd 2679 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( -.  0  e.  ran  ( RR 
_D  G )  -> 
( ( RR  _D  G ) `  z
)  =/=  0 ) )
177169, 176mpd 15 . . . . . 6  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( ( RR  _D  G ) `  z )  =/=  0
)
178164, 168, 177divcld 10316 . . . . 5  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( (
( RR  _D  F
) `  z )  /  ( ( RR 
_D  G ) `  z ) )  e.  CC )
179178, 64fmptd 6043 . . . 4  |-  ( ph  ->  ( z  e.  ( A (,) B ) 
|->  ( ( ( RR 
_D  F ) `  z )  /  (
( RR  _D  G
) `  z )
) ) : ( A (,) B ) --> CC )
180 ax-resscn 9545 . . . . . 6  |-  RR  C_  CC
18114, 180sstri 3513 . . . . 5  |-  ( A (,) B )  C_  CC
182181a1i 11 . . . 4  |-  ( ph  ->  ( A (,) B
)  C_  CC )
18317recnd 9618 . . . 4  |-  ( ph  ->  A  e.  CC )
184179, 182, 183ellimc3 22018 . . 3  |-  ( ph  ->  ( C  e.  ( ( z  e.  ( A (,) B ) 
|->  ( ( ( RR 
_D  F ) `  z )  /  (
( RR  _D  G
) `  z )
) ) lim CC  A
)  <->  ( C  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. y  e.  ( A (,) B ) ( ( y  =/= 
A  /\  ( abs `  ( y  -  A
) )  <  d
)  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F
) `  z )  /  ( ( RR 
_D  G ) `  z ) ) ) `
 y )  -  C ) )  < 
e ) ) ) )
18583ffvelrnda 6019 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( F `  z )  e.  RR )
186185recnd 9618 . . . . . 6  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( F `  z )  e.  CC )
18785ffvelrnda 6019 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( G `  z )  e.  RR )
188187recnd 9618 . . . . . 6  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( G `  z )  e.  CC )
18995adantr 465 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  -.  0  e.  ran  G )
190 ffn 5729 . . . . . . . . . . 11  |-  ( G : ( A (,) B ) --> RR  ->  G  Fn  ( A (,) B ) )
19185, 190syl 16 . . . . . . . . . 10  |-  ( ph  ->  G  Fn  ( A (,) B ) )
192 fnfvelrn 6016 . . . . . . . . . 10  |-  ( ( G  Fn  ( A (,) B )  /\  z  e.  ( A (,) B ) )  -> 
( G `  z
)  e.  ran  G
)
193191, 192sylan 471 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( G `  z )  e.  ran  G )
194 eleq1 2539 . . . . . . . . 9  |-  ( ( G `  z )  =  0  ->  (
( G `  z
)  e.  ran  G  <->  0  e.  ran  G ) )
195193, 194syl5ibcom 220 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( ( G `  z )  =  0  ->  0  e.  ran  G ) )
196195necon3bd 2679 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( -.  0  e.  ran  G  -> 
( G `  z
)  =/=  0 ) )
197189, 196mpd 15 . . . . . 6  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( G `  z )  =/=  0
)
198186, 188, 197divcld 10316 . . . . 5  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( ( F `  z )  /  ( G `  z ) )  e.  CC )
199198, 145fmptd 6043 . . . 4  |-  ( ph  ->  ( z  e.  ( A (,) B ) 
|->  ( ( F `  z )  /  ( G `  z )
) ) : ( A (,) B ) --> CC )
200199, 182, 183ellimc3 22018 . . 3  |-  ( ph  ->  ( C  e.  ( ( z  e.  ( A (,) B ) 
|->  ( ( F `  z )  /  ( G `  z )
) ) lim CC  A
)  <->  ( C  e.  CC  /\  A. x  e.  RR+  E. d  e.  RR+  A. v  e.  ( A (,) B ) ( ( v  =/= 
A  /\  ( abs `  ( v  -  A
) )  <  d
)  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( F `  z )  /  ( G `  z ) ) ) `
 v )  -  C ) )  < 
x ) ) ) )
201160, 184, 2003imtr4d 268 . 2  |-  ( ph  ->  ( C  e.  ( ( z  e.  ( A (,) B ) 
|->  ( ( ( RR 
_D  F ) `  z )  /  (
( RR  _D  G
) `  z )
) ) lim CC  A
)  ->  C  e.  ( ( z  e.  ( A (,) B
)  |->  ( ( F `
 z )  / 
( G `  z
) ) ) lim CC  A ) ) )
2021, 201mpd 15 1  |-  ( ph  ->  C  e.  ( ( z  e.  ( A (,) B )  |->  ( ( F `  z
)  /  ( G `
 z ) ) ) lim CC  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   {crab 2818    i^i cin 3475    C_ wss 3476   ifcif 3939   class class class wbr 4447    |-> cmpt 4505   dom cdm 4999   ran crn 5000    Fn wfn 5581   -->wf 5582   ` cfv 5586  (class class class)co 6282   CCcc 9486   RRcr 9487   0cc0 9488    + caddc 9491    x. cmul 9493   RR*cxr 9623    < clt 9624    <_ cle 9625    - cmin 9801    / cdiv 10202   2c2 10581   RR+crp 11216   (,)cioo 11525   (,]cioc 11526   abscabs 13026   lim CC climc 22001    _D cdv 22002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567  ax-mulf 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-om 6679  df-1st 6781  df-2nd 6782  df-supp 6899  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-map 7419  df-pm 7420  df-ixp 7467  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fsupp 7826  df-fi 7867  df-sup 7897  df-oi 7931  df-card 8316  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-q 11179  df-rp 11217  df-xneg 11314  df-xadd 11315  df-xmul 11316  df-ioo 11529  df-ioc 11530  df-ico 11531  df-icc 11532  df-fz 11669  df-fzo 11789  df-seq 12072  df-exp 12131  df-hash 12370  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-struct 14488  df-ndx 14489  df-slot 14490  df-base 14491  df-sets 14492  df-ress 14493  df-plusg 14564  df-mulr 14565  df-starv 14566  df-sca 14567  df-vsca 14568  df-ip 14569  df-tset 14570  df-ple 14571  df-ds 14573  df-unif 14574  df-hom 14575  df-cco 14576  df-rest 14674  df-topn 14675  df-0g 14693  df-gsum 14694  df-topgen 14695  df-pt 14696  df-prds 14699  df-xrs 14753  df-qtop 14758  df-imas 14759  df-xps 14761  df-mre 14837  df-mrc 14838  df-acs 14840  df-mnd 15728  df-submnd 15778  df-mulg 15861  df-cntz 16150  df-cmn 16596  df-psmet 18182  df-xmet 18183  df-met 18184  df-bl 18185  df-mopn 18186  df-fbas 18187  df-fg 18188  df-cnfld 18192  df-top 19166  df-bases 19168  df-topon 19169  df-topsp 19170  df-cld 19286  df-ntr 19287  df-cls 19288  df-nei 19365  df-lp 19403  df-perf 19404  df-cn 19494  df-cnp 19495  df-haus 19582  df-cmp 19653  df-tx 19798  df-hmeo 19991  df-fil 20082  df-fm 20174  df-flim 20175  df-flf 20176  df-xms 20558  df-ms 20559  df-tms 20560  df-cncf 21117  df-limc 22005  df-dv 22006
This theorem is referenced by:  lhop2  22151  lhop  22152  fourierdlem61  31468
  Copyright terms: Public domain W3C validator