MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lhop1 Structured version   Unicode version

Theorem lhop1 21461
Description: L'Hôpital's Rule for limits from the right. If  F and  G are differentiable real functions on  ( A ,  B ), and 
F and  G both approach 0 at  A, and  G ( x ) and  G'  ( x ) are not zero on  ( A ,  B ), and the limit of  F'  ( x )  /  G'  ( x ) at  A is  C, then the limit  F ( x )  /  G ( x ) at  A also exists and equals  C. (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
lhop1.a  |-  ( ph  ->  A  e.  RR )
lhop1.b  |-  ( ph  ->  B  e.  RR* )
lhop1.l  |-  ( ph  ->  A  <  B )
lhop1.f  |-  ( ph  ->  F : ( A (,) B ) --> RR )
lhop1.g  |-  ( ph  ->  G : ( A (,) B ) --> RR )
lhop1.if  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
lhop1.ig  |-  ( ph  ->  dom  ( RR  _D  G )  =  ( A (,) B ) )
lhop1.f0  |-  ( ph  ->  0  e.  ( F lim
CC  A ) )
lhop1.g0  |-  ( ph  ->  0  e.  ( G lim
CC  A ) )
lhop1.gn0  |-  ( ph  ->  -.  0  e.  ran  G )
lhop1.gd0  |-  ( ph  ->  -.  0  e.  ran  ( RR  _D  G
) )
lhop1.c  |-  ( ph  ->  C  e.  ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) lim CC  A ) )
Assertion
Ref Expression
lhop1  |-  ( ph  ->  C  e.  ( ( z  e.  ( A (,) B )  |->  ( ( F `  z
)  /  ( G `
 z ) ) ) lim CC  A ) )
Distinct variable groups:    z, B    ph, z    z, A    z, C    z, F    z, G

Proof of Theorem lhop1
Dummy variables  e 
d  r  v  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lhop1.c . 2  |-  ( ph  ->  C  e.  ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) lim CC  A ) )
2 simpr 461 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
32rphalfcld 11031 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  /  2 )  e.  RR+ )
4 breq2 4291 . . . . . . . . . 10  |-  ( e  =  ( x  / 
2 )  ->  (
( abs `  (
( ( z  e.  ( A (,) B
)  |->  ( ( ( RR  _D  F ) `
 z )  / 
( ( RR  _D  G ) `  z
) ) ) `  y )  -  C
) )  <  e  <->  ( abs `  ( ( ( z  e.  ( A (,) B ) 
|->  ( ( ( RR 
_D  F ) `  z )  /  (
( RR  _D  G
) `  z )
) ) `  y
)  -  C ) )  <  ( x  /  2 ) ) )
54imbi2d 316 . . . . . . . . 9  |-  ( e  =  ( x  / 
2 )  ->  (
( ( y  =/= 
A  /\  ( abs `  ( y  -  A
) )  <  d
)  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F
) `  z )  /  ( ( RR 
_D  G ) `  z ) ) ) `
 y )  -  C ) )  < 
e )  <->  ( (
y  =/=  A  /\  ( abs `  ( y  -  A ) )  <  d )  -> 
( abs `  (
( ( z  e.  ( A (,) B
)  |->  ( ( ( RR  _D  F ) `
 z )  / 
( ( RR  _D  G ) `  z
) ) ) `  y )  -  C
) )  <  (
x  /  2 ) ) ) )
65rexralbidv 2754 . . . . . . . 8  |-  ( e  =  ( x  / 
2 )  ->  ( E. d  e.  RR+  A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  e )  <->  E. d  e.  RR+  A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  ( x  / 
2 ) ) ) )
76rspcv 3064 . . . . . . 7  |-  ( ( x  /  2 )  e.  RR+  ->  ( A. e  e.  RR+  E. d  e.  RR+  A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  e )  ->  E. d  e.  RR+  A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  ( x  / 
2 ) ) ) )
83, 7syl 16 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( A. e  e.  RR+  E. d  e.  RR+  A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  e )  ->  E. d  e.  RR+  A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  ( x  / 
2 ) ) ) )
9 rabid 2892 . . . . . . . . . . . . . 14  |-  ( v  e.  { v  e.  ( A (,) B
)  |  ( abs `  ( v  -  A
) )  <  d } 
<->  ( v  e.  ( A (,) B )  /\  ( abs `  (
v  -  A ) )  <  d ) )
10 eliooord 11347 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( v  e.  ( A (,) B )  ->  ( A  <  v  /\  v  <  B ) )
1110adantl 466 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
( A  <  v  /\  v  <  B ) )
1211simprd 463 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
v  <  B )
1312biantrurd 508 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
( v  <  (
d  +  A )  <-> 
( v  <  B  /\  v  <  ( d  +  A ) ) ) )
14 ioossre 11349 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A (,) B )  C_  RR
15 simpr 461 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
v  e.  ( A (,) B ) )
1614, 15sseldi 3349 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
v  e.  RR )
17 lhop1.a . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  A  e.  RR )
1817ad3antrrr 729 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  ->  A  e.  RR )
19 simpr 461 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  ->  d  e.  RR+ )
2019rpred 11019 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  ->  d  e.  RR )
2120adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
d  e.  RR )
2216, 18, 21ltsubaddd 9927 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
( ( v  -  A )  <  d  <->  v  <  ( d  +  A ) ) )
2316rexrd 9425 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
v  e.  RR* )
24 lhop1.b . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  B  e.  RR* )
2524ad3antrrr 729 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  ->  B  e.  RR* )
2617ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  ->  A  e.  RR )
2720, 26readdcld 9405 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  ->  (
d  +  A )  e.  RR )
2827rexrd 9425 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  ->  (
d  +  A )  e.  RR* )
2928adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
( d  +  A
)  e.  RR* )
30 xrltmin 11146 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( v  e.  RR*  /\  B  e.  RR*  /\  ( d  +  A )  e. 
RR* )  ->  (
v  <  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  <->  ( v  <  B  /\  v  < 
( d  +  A
) ) ) )
3123, 25, 29, 30syl3anc 1218 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
( v  <  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  <-> 
( v  <  B  /\  v  <  ( d  +  A ) ) ) )
3213, 22, 313bitr4rd 286 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
( v  <  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  <-> 
( v  -  A
)  <  d )
)
3318rexrd 9425 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  ->  A  e.  RR* )
34 ifcl 3826 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  e.  RR*  /\  (
d  +  A )  e.  RR* )  ->  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  e.  RR* )
3525, 29, 34syl2anc 661 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  ->  if ( B  <_  (
d  +  A ) ,  B ,  ( d  +  A ) )  e.  RR* )
3611simpld 459 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  ->  A  <  v )
37 elioo5 11345 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  RR*  /\  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  e.  RR*  /\  v  e.  RR* )  ->  (
v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) )  <-> 
( A  <  v  /\  v  <  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ) )
3837baibd 900 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  RR*  /\  if ( B  <_ 
( d  +  A
) ,  B , 
( d  +  A
) )  e.  RR*  /\  v  e.  RR* )  /\  A  <  v )  ->  ( v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) )  <->  v  <  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )
3933, 35, 23, 36, 38syl31anc 1221 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
( v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) )  <-> 
v  <  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )
4018, 16, 36ltled 9514 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  ->  A  <_  v )
4118, 16, 40abssubge0d 12910 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
( abs `  (
v  -  A ) )  =  ( v  -  A ) )
4241breq1d 4297 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
( ( abs `  (
v  -  A ) )  <  d  <->  ( v  -  A )  <  d
) )
4332, 39, 423bitr4d 285 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
( v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) )  <-> 
( abs `  (
v  -  A ) )  <  d ) )
4443rabbi2dva 3553 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  ->  (
( A (,) B
)  i^i  ( A (,) if ( B  <_ 
( d  +  A
) ,  B , 
( d  +  A
) ) ) )  =  { v  e.  ( A (,) B
)  |  ( abs `  ( v  -  A
) )  <  d } )
4524ad2antrr 725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  ->  B  e.  RR* )
46 xrmin1 11141 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  RR*  /\  (
d  +  A )  e.  RR* )  ->  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  <_  B )
4745, 28, 46syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  ->  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  <_  B )
48 iooss2 11328 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  RR*  /\  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  <_  B )  -> 
( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) )  C_  ( A (,) B ) )
4945, 47, 48syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  ->  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) 
C_  ( A (,) B ) )
50 dfss1 3550 . . . . . . . . . . . . . . . . 17  |-  ( ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) 
C_  ( A (,) B )  <->  ( ( A (,) B )  i^i  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  =  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )
5149, 50sylib 196 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  ->  (
( A (,) B
)  i^i  ( A (,) if ( B  <_ 
( d  +  A
) ,  B , 
( d  +  A
) ) ) )  =  ( A (,) if ( B  <_  (
d  +  A ) ,  B ,  ( d  +  A ) ) ) )
5244, 51eqtr3d 2472 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  ->  { v  e.  ( A (,) B )  |  ( abs `  ( v  -  A ) )  <  d }  =  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )
5352eleq2d 2505 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  ->  (
v  e.  { v  e.  ( A (,) B )  |  ( abs `  ( v  -  A ) )  <  d }  <->  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ) )
549, 53syl5bbr 259 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  ->  (
( v  e.  ( A (,) B )  /\  ( abs `  (
v  -  A ) )  <  d )  <-> 
v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ) )
55 lbioo 11323 . . . . . . . . . . . . . . . . . . . . . 22  |-  -.  A  e.  ( A (,) B
)
56 eleq1 2498 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  A  ->  (
y  e.  ( A (,) B )  <->  A  e.  ( A (,) B ) ) )
5755, 56mtbiri 303 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  A  ->  -.  y  e.  ( A (,) B ) )
5857necon2ai 2651 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  ( A (,) B )  ->  y  =/=  A )
5958biantrurd 508 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ( A (,) B )  ->  (
( abs `  (
y  -  A ) )  <  d  <->  ( y  =/=  A  /\  ( abs `  ( y  -  A
) )  <  d
) ) )
6059bicomd 201 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( A (,) B )  ->  (
( y  =/=  A  /\  ( abs `  (
y  -  A ) )  <  d )  <-> 
( abs `  (
y  -  A ) )  <  d ) )
61 fveq2 5686 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  =  y  ->  (
( RR  _D  F
) `  z )  =  ( ( RR 
_D  F ) `  y ) )
62 fveq2 5686 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  =  y  ->  (
( RR  _D  G
) `  z )  =  ( ( RR 
_D  G ) `  y ) )
6361, 62oveq12d 6104 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  =  y  ->  (
( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) )  =  ( ( ( RR  _D  F ) `
 y )  / 
( ( RR  _D  G ) `  y
) ) )
64 eqid 2438 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F
) `  z )  /  ( ( RR 
_D  G ) `  z ) ) )  =  ( z  e.  ( A (,) B
)  |->  ( ( ( RR  _D  F ) `
 z )  / 
( ( RR  _D  G ) `  z
) ) )
65 ovex 6111 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( RR  _D  F
) `  z )  /  ( ( RR 
_D  G ) `  z ) )  e. 
_V
6663, 64, 65fvmpt3i 5773 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  ( A (,) B )  ->  (
( z  e.  ( A (,) B ) 
|->  ( ( ( RR 
_D  F ) `  z )  /  (
( RR  _D  G
) `  z )
) ) `  y
)  =  ( ( ( RR  _D  F
) `  y )  /  ( ( RR 
_D  G ) `  y ) ) )
6766oveq1d 6101 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  ( A (,) B )  ->  (
( ( z  e.  ( A (,) B
)  |->  ( ( ( RR  _D  F ) `
 z )  / 
( ( RR  _D  G ) `  z
) ) ) `  y )  -  C
)  =  ( ( ( ( RR  _D  F ) `  y
)  /  ( ( RR  _D  G ) `
 y ) )  -  C ) )
6867fveq2d 5690 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ( A (,) B )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  =  ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) ) )
6968breq1d 4297 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( A (,) B )  ->  (
( abs `  (
( ( z  e.  ( A (,) B
)  |->  ( ( ( RR  _D  F ) `
 z )  / 
( ( RR  _D  G ) `  z
) ) ) `  y )  -  C
) )  <  (
x  /  2 )  <-> 
( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )
7060, 69imbi12d 320 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( A (,) B )  ->  (
( ( y  =/= 
A  /\  ( abs `  ( y  -  A
) )  <  d
)  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F
) `  z )  /  ( ( RR 
_D  G ) `  z ) ) ) `
 y )  -  C ) )  < 
( x  /  2
) )  <->  ( ( abs `  ( y  -  A ) )  < 
d  ->  ( abs `  ( ( ( ( RR  _D  F ) `
 y )  / 
( ( RR  _D  G ) `  y
) )  -  C
) )  <  (
x  /  2 ) ) ) )
7170ralbiia 2742 . . . . . . . . . . . . . . . 16  |-  ( A. y  e.  ( A (,) B ) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  <  d )  -> 
( abs `  (
( ( z  e.  ( A (,) B
)  |->  ( ( ( RR  _D  F ) `
 z )  / 
( ( RR  _D  G ) `  z
) ) ) `  y )  -  C
) )  <  (
x  /  2 ) )  <->  A. y  e.  ( A (,) B ) ( ( abs `  (
y  -  A ) )  <  d  -> 
( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )
72 oveq1 6093 . . . . . . . . . . . . . . . . . . 19  |-  ( v  =  y  ->  (
v  -  A )  =  ( y  -  A ) )
7372fveq2d 5690 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  y  ->  ( abs `  ( v  -  A ) )  =  ( abs `  (
y  -  A ) ) )
7473breq1d 4297 . . . . . . . . . . . . . . . . 17  |-  ( v  =  y  ->  (
( abs `  (
v  -  A ) )  <  d  <->  ( abs `  ( y  -  A
) )  <  d
) )
7574ralrab 3116 . . . . . . . . . . . . . . . 16  |-  ( A. y  e.  { v  e.  ( A (,) B
)  |  ( abs `  ( v  -  A
) )  <  d }  ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 )  <->  A. y  e.  ( A (,) B
) ( ( abs `  ( y  -  A
) )  <  d  ->  ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )
7671, 75bitr4i 252 . . . . . . . . . . . . . . 15  |-  ( A. y  e.  ( A (,) B ) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  <  d )  -> 
( abs `  (
( ( z  e.  ( A (,) B
)  |->  ( ( ( RR  _D  F ) `
 z )  / 
( ( RR  _D  G ) `  z
) ) ) `  y )  -  C
) )  <  (
x  /  2 ) )  <->  A. y  e.  {
v  e.  ( A (,) B )  |  ( abs `  (
v  -  A ) )  <  d }  ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) )
7752adantrr 716 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ) )  ->  { v  e.  ( A (,) B )  |  ( abs `  (
v  -  A ) )  <  d }  =  ( A (,) if ( B  <_  (
d  +  A ) ,  B ,  ( d  +  A ) ) ) )
7877raleqdv 2918 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ) )  -> 
( A. y  e. 
{ v  e.  ( A (,) B )  |  ( abs `  (
v  -  A ) )  <  d }  ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 )  <->  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )
7917ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  A  e.  RR )
8024ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  B  e.  RR* )
81 lhop1.l . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  A  <  B )
8281ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  A  <  B )
83 lhop1.f . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  F : ( A (,) B ) --> RR )
8483ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  F :
( A (,) B
) --> RR )
85 lhop1.g . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  G : ( A (,) B ) --> RR )
8685ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  G :
( A (,) B
) --> RR )
87 lhop1.if . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
8887ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  dom  ( RR 
_D  F )  =  ( A (,) B
) )
89 lhop1.ig . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  dom  ( RR  _D  G )  =  ( A (,) B ) )
9089ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  dom  ( RR 
_D  G )  =  ( A (,) B
) )
91 lhop1.f0 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  0  e.  ( F lim
CC  A ) )
9291ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  0  e.  ( F lim CC  A ) )
93 lhop1.g0 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  0  e.  ( G lim
CC  A ) )
9493ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  0  e.  ( G lim CC  A ) )
95 lhop1.gn0 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  -.  0  e.  ran  G )
9695ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  -.  0  e.  ran  G )
97 lhop1.gd0 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  -.  0  e.  ran  ( RR  _D  G
) )
9897ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  -.  0  e.  ran  ( RR  _D  G ) )
991ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  C  e.  ( ( z  e.  ( A (,) B
)  |->  ( ( ( RR  _D  F ) `
 z )  / 
( ( RR  _D  G ) `  z
) ) ) lim CC  A ) )
1003adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  ( x  /  2 )  e.  RR+ )
10179rexrd 9425 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  A  e.  RR* )
102 simprll 761 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  d  e.  RR+ )
103102rpred 11019 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  d  e.  RR )
104103, 79readdcld 9405 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  ( d  +  A )  e.  RR )
105 iocssre 11367 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  RR*  /\  (
d  +  A )  e.  RR )  -> 
( A (,] (
d  +  A ) )  C_  RR )
106101, 104, 105syl2anc 661 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  ( A (,] ( d  +  A
) )  C_  RR )
10780adantr 465 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( ( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  /\  B  <_ 
( d  +  A
) )  ->  B  e.  RR* )
108103adantr 465 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( ( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  /\  -.  B  <_  ( d  +  A
) )  ->  d  e.  RR )
10979adantr 465 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( ( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  /\  -.  B  <_  ( d  +  A
) )  ->  A  e.  RR )
110108, 109readdcld 9405 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( ( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  /\  -.  B  <_  ( d  +  A
) )  ->  (
d  +  A )  e.  RR )
111110rexrd 9425 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( ( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  /\  -.  B  <_  ( d  +  A
) )  ->  (
d  +  A )  e.  RR* )
112107, 111ifclda 3816 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  e. 
RR* )
11379, 102ltaddrp2d 11049 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  A  <  ( d  +  A ) )
114104rexrd 9425 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  ( d  +  A )  e.  RR* )
115 xrltmin 11146 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( d  +  A )  e. 
RR* )  ->  ( A  <  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  <->  ( A  <  B  /\  A  < 
( d  +  A
) ) ) )
116101, 80, 114, 115syl3anc 1218 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  ( A  <  if ( B  <_ 
( d  +  A
) ,  B , 
( d  +  A
) )  <->  ( A  <  B  /\  A  < 
( d  +  A
) ) ) )
11782, 113, 116mpbir2and 913 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  A  <  if ( B  <_  (
d  +  A ) ,  B ,  ( d  +  A ) ) )
118 xrmin2 11142 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( B  e.  RR*  /\  (
d  +  A )  e.  RR* )  ->  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  <_  ( d  +  A ) )
11980, 114, 118syl2anc 661 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  <_ 
( d  +  A
) )
120 elioc1 11334 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  RR*  /\  (
d  +  A )  e.  RR* )  ->  ( if ( B  <_  (
d  +  A ) ,  B ,  ( d  +  A ) )  e.  ( A (,] ( d  +  A ) )  <->  ( if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  e.  RR*  /\  A  < 
if ( B  <_ 
( d  +  A
) ,  B , 
( d  +  A
) )  /\  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  <_  ( d  +  A ) ) ) )
121101, 114, 120syl2anc 661 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  ( if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  e.  ( A (,] ( d  +  A
) )  <->  ( if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  e.  RR*  /\  A  < 
if ( B  <_ 
( d  +  A
) ,  B , 
( d  +  A
) )  /\  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  <_  ( d  +  A ) ) ) )
122112, 117, 119, 121mpbir3and 1171 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  e.  ( A (,] (
d  +  A ) ) )
123106, 122sseldd 3352 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  e.  RR )
12480, 114, 46syl2anc 661 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) )  <_  B )
125 simprlr 762 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )
126 simprr 756 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) )
127 eqid 2438 . . . . . . . . . . . . . . . . . . 19  |-  ( A  +  ( r  / 
2 ) )  =  ( A  +  ( r  /  2 ) )
12879, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 99, 100, 123, 124, 125, 126, 127lhop1lem 21460 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  ( abs `  ( ( ( F `
 v )  / 
( G `  v
) )  -  C
) )  <  (
2  x.  ( x  /  2 ) ) )
1292rpcnd 11021 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  CC )
130 2cnd 10386 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  RR+ )  ->  2  e.  CC )
131 2ne0 10406 . . . . . . . . . . . . . . . . . . . . 21  |-  2  =/=  0
132131a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  RR+ )  ->  2  =/=  0 )
133129, 130, 132divcan2d 10101 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 2  x.  ( x  / 
2 ) )  =  x )
134133adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  ( 2  x.  ( x  / 
2 ) )  =  x )
135128, 134breqtrd 4311 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
( d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) )  /\  A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 ) ) )  ->  ( abs `  ( ( ( F `
 v )  / 
( G `  v
) )  -  C
) )  <  x
)
136135expr 615 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ) )  -> 
( A. y  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 )  -> 
( abs `  (
( ( F `  v )  /  ( G `  v )
)  -  C ) )  <  x ) )
13778, 136sylbid 215 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ) )  -> 
( A. y  e. 
{ v  e.  ( A (,) B )  |  ( abs `  (
v  -  A ) )  <  d }  ( abs `  (
( ( ( RR 
_D  F ) `  y )  /  (
( RR  _D  G
) `  y )
)  -  C ) )  <  ( x  /  2 )  -> 
( abs `  (
( ( F `  v )  /  ( G `  v )
)  -  C ) )  <  x ) )
13876, 137syl5bi 217 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  RR+  /\  v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) ) ) )  -> 
( A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  ( x  / 
2 ) )  -> 
( abs `  (
( ( F `  v )  /  ( G `  v )
)  -  C ) )  <  x ) )
139138expr 615 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  ->  (
v  e.  ( A (,) if ( B  <_  ( d  +  A ) ,  B ,  ( d  +  A ) ) )  ->  ( A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  ( x  / 
2 ) )  -> 
( abs `  (
( ( F `  v )  /  ( G `  v )
)  -  C ) )  <  x ) ) )
14054, 139sylbid 215 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  ->  (
( v  e.  ( A (,) B )  /\  ( abs `  (
v  -  A ) )  <  d )  ->  ( A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  ( x  / 
2 ) )  -> 
( abs `  (
( ( F `  v )  /  ( G `  v )
)  -  C ) )  <  x ) ) )
141140expdimp 437 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
( ( abs `  (
v  -  A ) )  <  d  -> 
( A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  ( x  / 
2 ) )  -> 
( abs `  (
( ( F `  v )  /  ( G `  v )
)  -  C ) )  <  x ) ) )
142 fveq2 5686 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  v  ->  ( F `  z )  =  ( F `  v ) )
143 fveq2 5686 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  v  ->  ( G `  z )  =  ( G `  v ) )
144142, 143oveq12d 6104 . . . . . . . . . . . . . . . . 17  |-  ( z  =  v  ->  (
( F `  z
)  /  ( G `
 z ) )  =  ( ( F `
 v )  / 
( G `  v
) ) )
145 eqid 2438 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ( A (,) B )  |->  ( ( F `  z )  /  ( G `  z ) ) )  =  ( z  e.  ( A (,) B
)  |->  ( ( F `
 z )  / 
( G `  z
) ) )
146 ovex 6111 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  z )  /  ( G `  z ) )  e. 
_V
147144, 145, 146fvmpt3i 5773 . . . . . . . . . . . . . . . 16  |-  ( v  e.  ( A (,) B )  ->  (
( z  e.  ( A (,) B ) 
|->  ( ( F `  z )  /  ( G `  z )
) ) `  v
)  =  ( ( F `  v )  /  ( G `  v ) ) )
148147oveq1d 6101 . . . . . . . . . . . . . . 15  |-  ( v  e.  ( A (,) B )  ->  (
( ( z  e.  ( A (,) B
)  |->  ( ( F `
 z )  / 
( G `  z
) ) ) `  v )  -  C
)  =  ( ( ( F `  v
)  /  ( G `
 v ) )  -  C ) )
149148fveq2d 5690 . . . . . . . . . . . . . 14  |-  ( v  e.  ( A (,) B )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( F `  z
)  /  ( G `
 z ) ) ) `  v )  -  C ) )  =  ( abs `  (
( ( F `  v )  /  ( G `  v )
)  -  C ) ) )
150149breq1d 4297 . . . . . . . . . . . . 13  |-  ( v  e.  ( A (,) B )  ->  (
( abs `  (
( ( z  e.  ( A (,) B
)  |->  ( ( F `
 z )  / 
( G `  z
) ) ) `  v )  -  C
) )  <  x  <->  ( abs `  ( ( ( F `  v
)  /  ( G `
 v ) )  -  C ) )  <  x ) )
151150imbi2d 316 . . . . . . . . . . . 12  |-  ( v  e.  ( A (,) B )  ->  (
( A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  ( x  / 
2 ) )  -> 
( abs `  (
( ( z  e.  ( A (,) B
)  |->  ( ( F `
 z )  / 
( G `  z
) ) ) `  v )  -  C
) )  <  x
)  <->  ( A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  ( x  / 
2 ) )  -> 
( abs `  (
( ( F `  v )  /  ( G `  v )
)  -  C ) )  <  x ) ) )
152151adantl 466 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
( ( A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  ( x  / 
2 ) )  -> 
( abs `  (
( ( z  e.  ( A (,) B
)  |->  ( ( F `
 z )  / 
( G `  z
) ) ) `  v )  -  C
) )  <  x
)  <->  ( A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  ( x  / 
2 ) )  -> 
( abs `  (
( ( F `  v )  /  ( G `  v )
)  -  C ) )  <  x ) ) )
153141, 152sylibrd 234 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
( ( abs `  (
v  -  A ) )  <  d  -> 
( A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  ( x  / 
2 ) )  -> 
( abs `  (
( ( z  e.  ( A (,) B
)  |->  ( ( F `
 z )  / 
( G `  z
) ) ) `  v )  -  C
) )  <  x
) ) )
154153adantld 467 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
( ( v  =/= 
A  /\  ( abs `  ( v  -  A
) )  <  d
)  ->  ( A. y  e.  ( A (,) B ) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  <  d )  -> 
( abs `  (
( ( z  e.  ( A (,) B
)  |->  ( ( ( RR  _D  F ) `
 z )  / 
( ( RR  _D  G ) `  z
) ) ) `  y )  -  C
) )  <  (
x  /  2 ) )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( F `  z )  /  ( G `  z ) ) ) `
 v )  -  C ) )  < 
x ) ) )
155154com23 78 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  /\  v  e.  ( A (,) B ) )  -> 
( A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  ( x  / 
2 ) )  -> 
( ( v  =/= 
A  /\  ( abs `  ( v  -  A
) )  <  d
)  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( F `  z )  /  ( G `  z ) ) ) `
 v )  -  C ) )  < 
x ) ) )
156155ralrimdva 2801 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  RR+ )  ->  ( A. y  e.  ( A (,) B ) ( ( y  =/=  A  /\  ( abs `  (
y  -  A ) )  <  d )  ->  ( abs `  (
( ( z  e.  ( A (,) B
)  |->  ( ( ( RR  _D  F ) `
 z )  / 
( ( RR  _D  G ) `  z
) ) ) `  y )  -  C
) )  <  (
x  /  2 ) )  ->  A. v  e.  ( A (,) B
) ( ( v  =/=  A  /\  ( abs `  ( v  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( F `  z
)  /  ( G `
 z ) ) ) `  v )  -  C ) )  <  x ) ) )
157156reximdva 2823 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( E. d  e.  RR+  A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  ( x  / 
2 ) )  ->  E. d  e.  RR+  A. v  e.  ( A (,) B
) ( ( v  =/=  A  /\  ( abs `  ( v  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( F `  z
)  /  ( G `
 z ) ) ) `  v )  -  C ) )  <  x ) ) )
1588, 157syld 44 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( A. e  e.  RR+  E. d  e.  RR+  A. y  e.  ( A (,) B
) ( ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) `  y )  -  C ) )  <  e )  ->  E. d  e.  RR+  A. v  e.  ( A (,) B
) ( ( v  =/=  A  /\  ( abs `  ( v  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( F `  z
)  /  ( G `
 z ) ) ) `  v )  -  C ) )  <  x ) ) )
159158ralrimdva 2801 . . . 4  |-  ( ph  ->  ( A. e  e.  RR+  E. d  e.  RR+  A. y  e.  ( A (,) B ) ( ( y  =/=  A  /\  ( abs `  (
y  -  A ) )  <  d )  ->  ( abs `  (
( ( z  e.  ( A (,) B
)  |->  ( ( ( RR  _D  F ) `
 z )  / 
( ( RR  _D  G ) `  z
) ) ) `  y )  -  C
) )  <  e
)  ->  A. x  e.  RR+  E. d  e.  RR+  A. v  e.  ( A (,) B ) ( ( v  =/= 
A  /\  ( abs `  ( v  -  A
) )  <  d
)  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( F `  z )  /  ( G `  z ) ) ) `
 v )  -  C ) )  < 
x ) ) )
160159anim2d 565 . . 3  |-  ( ph  ->  ( ( C  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. y  e.  ( A (,) B ) ( ( y  =/= 
A  /\  ( abs `  ( y  -  A
) )  <  d
)  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F
) `  z )  /  ( ( RR 
_D  G ) `  z ) ) ) `
 y )  -  C ) )  < 
e ) )  -> 
( C  e.  CC  /\ 
A. x  e.  RR+  E. d  e.  RR+  A. v  e.  ( A (,) B
) ( ( v  =/=  A  /\  ( abs `  ( v  -  A ) )  < 
d )  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( F `  z
)  /  ( G `
 z ) ) ) `  v )  -  C ) )  <  x ) ) ) )
161 dvf 21357 . . . . . . . 8  |-  ( RR 
_D  F ) : dom  ( RR  _D  F ) --> CC
16287feq2d 5542 . . . . . . . 8  |-  ( ph  ->  ( ( RR  _D  F ) : dom  ( RR  _D  F
) --> CC  <->  ( RR  _D  F ) : ( A (,) B ) --> CC ) )
163161, 162mpbii 211 . . . . . . 7  |-  ( ph  ->  ( RR  _D  F
) : ( A (,) B ) --> CC )
164163ffvelrnda 5838 . . . . . 6  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  z )  e.  CC )
165 dvf 21357 . . . . . . . 8  |-  ( RR 
_D  G ) : dom  ( RR  _D  G ) --> CC
16689feq2d 5542 . . . . . . . 8  |-  ( ph  ->  ( ( RR  _D  G ) : dom  ( RR  _D  G
) --> CC  <->  ( RR  _D  G ) : ( A (,) B ) --> CC ) )
167165, 166mpbii 211 . . . . . . 7  |-  ( ph  ->  ( RR  _D  G
) : ( A (,) B ) --> CC )
168167ffvelrnda 5838 . . . . . 6  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( ( RR  _D  G ) `  z )  e.  CC )
16997adantr 465 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  -.  0  e.  ran  ( RR  _D  G ) )
170 ffn 5554 . . . . . . . . . . 11  |-  ( ( RR  _D  G ) : ( A (,) B ) --> CC  ->  ( RR  _D  G )  Fn  ( A (,) B ) )
171167, 170syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( RR  _D  G
)  Fn  ( A (,) B ) )
172 fnfvelrn 5835 . . . . . . . . . 10  |-  ( ( ( RR  _D  G
)  Fn  ( A (,) B )  /\  z  e.  ( A (,) B ) )  -> 
( ( RR  _D  G ) `  z
)  e.  ran  ( RR  _D  G ) )
173171, 172sylan 471 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( ( RR  _D  G ) `  z )  e.  ran  ( RR  _D  G
) )
174 eleq1 2498 . . . . . . . . 9  |-  ( ( ( RR  _D  G
) `  z )  =  0  ->  (
( ( RR  _D  G ) `  z
)  e.  ran  ( RR  _D  G )  <->  0  e.  ran  ( RR  _D  G
) ) )
175173, 174syl5ibcom 220 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( (
( RR  _D  G
) `  z )  =  0  ->  0  e.  ran  ( RR  _D  G ) ) )
176175necon3bd 2640 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( -.  0  e.  ran  ( RR 
_D  G )  -> 
( ( RR  _D  G ) `  z
)  =/=  0 ) )
177169, 176mpd 15 . . . . . 6  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( ( RR  _D  G ) `  z )  =/=  0
)
178164, 168, 177divcld 10099 . . . . 5  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( (
( RR  _D  F
) `  z )  /  ( ( RR 
_D  G ) `  z ) )  e.  CC )
179178, 64fmptd 5862 . . . 4  |-  ( ph  ->  ( z  e.  ( A (,) B ) 
|->  ( ( ( RR 
_D  F ) `  z )  /  (
( RR  _D  G
) `  z )
) ) : ( A (,) B ) --> CC )
180 ax-resscn 9331 . . . . . 6  |-  RR  C_  CC
18114, 180sstri 3360 . . . . 5  |-  ( A (,) B )  C_  CC
182181a1i 11 . . . 4  |-  ( ph  ->  ( A (,) B
)  C_  CC )
18317recnd 9404 . . . 4  |-  ( ph  ->  A  e.  CC )
184179, 182, 183ellimc3 21329 . . 3  |-  ( ph  ->  ( C  e.  ( ( z  e.  ( A (,) B ) 
|->  ( ( ( RR 
_D  F ) `  z )  /  (
( RR  _D  G
) `  z )
) ) lim CC  A
)  <->  ( C  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. y  e.  ( A (,) B ) ( ( y  =/= 
A  /\  ( abs `  ( y  -  A
) )  <  d
)  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F
) `  z )  /  ( ( RR 
_D  G ) `  z ) ) ) `
 y )  -  C ) )  < 
e ) ) ) )
18583ffvelrnda 5838 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( F `  z )  e.  RR )
186185recnd 9404 . . . . . 6  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( F `  z )  e.  CC )
18785ffvelrnda 5838 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( G `  z )  e.  RR )
188187recnd 9404 . . . . . 6  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( G `  z )  e.  CC )
18995adantr 465 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  -.  0  e.  ran  G )
190 ffn 5554 . . . . . . . . . . 11  |-  ( G : ( A (,) B ) --> RR  ->  G  Fn  ( A (,) B ) )
19185, 190syl 16 . . . . . . . . . 10  |-  ( ph  ->  G  Fn  ( A (,) B ) )
192 fnfvelrn 5835 . . . . . . . . . 10  |-  ( ( G  Fn  ( A (,) B )  /\  z  e.  ( A (,) B ) )  -> 
( G `  z
)  e.  ran  G
)
193191, 192sylan 471 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( G `  z )  e.  ran  G )
194 eleq1 2498 . . . . . . . . 9  |-  ( ( G `  z )  =  0  ->  (
( G `  z
)  e.  ran  G  <->  0  e.  ran  G ) )
195193, 194syl5ibcom 220 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( ( G `  z )  =  0  ->  0  e.  ran  G ) )
196195necon3bd 2640 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( -.  0  e.  ran  G  -> 
( G `  z
)  =/=  0 ) )
197189, 196mpd 15 . . . . . 6  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( G `  z )  =/=  0
)
198186, 188, 197divcld 10099 . . . . 5  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( ( F `  z )  /  ( G `  z ) )  e.  CC )
199198, 145fmptd 5862 . . . 4  |-  ( ph  ->  ( z  e.  ( A (,) B ) 
|->  ( ( F `  z )  /  ( G `  z )
) ) : ( A (,) B ) --> CC )
200199, 182, 183ellimc3 21329 . . 3  |-  ( ph  ->  ( C  e.  ( ( z  e.  ( A (,) B ) 
|->  ( ( F `  z )  /  ( G `  z )
) ) lim CC  A
)  <->  ( C  e.  CC  /\  A. x  e.  RR+  E. d  e.  RR+  A. v  e.  ( A (,) B ) ( ( v  =/= 
A  /\  ( abs `  ( v  -  A
) )  <  d
)  ->  ( abs `  ( ( ( z  e.  ( A (,) B )  |->  ( ( F `  z )  /  ( G `  z ) ) ) `
 v )  -  C ) )  < 
x ) ) ) )
201160, 184, 2003imtr4d 268 . 2  |-  ( ph  ->  ( C  e.  ( ( z  e.  ( A (,) B ) 
|->  ( ( ( RR 
_D  F ) `  z )  /  (
( RR  _D  G
) `  z )
) ) lim CC  A
)  ->  C  e.  ( ( z  e.  ( A (,) B
)  |->  ( ( F `
 z )  / 
( G `  z
) ) ) lim CC  A ) ) )
2021, 201mpd 15 1  |-  ( ph  ->  C  e.  ( ( z  e.  ( A (,) B )  |->  ( ( F `  z
)  /  ( G `
 z ) ) ) lim CC  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2601   A.wral 2710   E.wrex 2711   {crab 2714    i^i cin 3322    C_ wss 3323   ifcif 3786   class class class wbr 4287    e. cmpt 4345   dom cdm 4835   ran crn 4836    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6086   CCcc 9272   RRcr 9273   0cc0 9274    + caddc 9277    x. cmul 9279   RR*cxr 9409    < clt 9410    <_ cle 9411    - cmin 9587    / cdiv 9985   2c2 10363   RR+crp 10983   (,)cioo 11292   (,]cioc 11293   abscabs 12715   lim CC climc 21312    _D cdv 21313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-supp 6686  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-map 7208  df-pm 7209  df-ixp 7256  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fsupp 7613  df-fi 7653  df-sup 7683  df-oi 7716  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ioo 11296  df-ioc 11297  df-ico 11298  df-icc 11299  df-fz 11430  df-fzo 11541  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-mulr 14244  df-starv 14245  df-sca 14246  df-vsca 14247  df-ip 14248  df-tset 14249  df-ple 14250  df-ds 14252  df-unif 14253  df-hom 14254  df-cco 14255  df-rest 14353  df-topn 14354  df-0g 14372  df-gsum 14373  df-topgen 14374  df-pt 14375  df-prds 14378  df-xrs 14432  df-qtop 14437  df-imas 14438  df-xps 14440  df-mre 14516  df-mrc 14517  df-acs 14519  df-mnd 15407  df-submnd 15457  df-mulg 15539  df-cntz 15826  df-cmn 16270  df-psmet 17784  df-xmet 17785  df-met 17786  df-bl 17787  df-mopn 17788  df-fbas 17789  df-fg 17790  df-cnfld 17794  df-top 18478  df-bases 18480  df-topon 18481  df-topsp 18482  df-cld 18598  df-ntr 18599  df-cls 18600  df-nei 18677  df-lp 18715  df-perf 18716  df-cn 18806  df-cnp 18807  df-haus 18894  df-cmp 18965  df-tx 19110  df-hmeo 19303  df-fil 19394  df-fm 19486  df-flim 19487  df-flf 19488  df-xms 19870  df-ms 19871  df-tms 19872  df-cncf 20429  df-limc 21316  df-dv 21317
This theorem is referenced by:  lhop2  21462  lhop  21463
  Copyright terms: Public domain W3C validator