MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsquadlem3 Structured version   Unicode version

Theorem lgsquadlem3 23756
Description: Lemma for lgsquad 23757. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypotheses
Ref Expression
lgseisen.1  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
lgseisen.2  |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )
lgseisen.3  |-  ( ph  ->  P  =/=  Q )
lgsquad.4  |-  M  =  ( ( P  - 
1 )  /  2
)
lgsquad.5  |-  N  =  ( ( Q  - 
1 )  /  2
)
lgsquad.6  |-  S  =  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( y  x.  P )  <  (
x  x.  Q ) ) }
Assertion
Ref Expression
lgsquadlem3  |-  ( ph  ->  ( ( P  /L Q )  x.  ( Q  /L
P ) )  =  ( -u 1 ^ ( M  x.  N
) ) )
Distinct variable groups:    x, y, P    ph, x, y    y, M    x, N, y    x, Q, y    x, S    x, M    y, S

Proof of Theorem lgsquadlem3
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lgseisen.2 . . . . 5  |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )
2 lgseisen.1 . . . . 5  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
3 lgseisen.3 . . . . . 6  |-  ( ph  ->  P  =/=  Q )
43necomd 2728 . . . . 5  |-  ( ph  ->  Q  =/=  P )
5 lgsquad.5 . . . . 5  |-  N  =  ( ( Q  - 
1 )  /  2
)
6 lgsquad.4 . . . . 5  |-  M  =  ( ( P  - 
1 )  /  2
)
7 eleq1 2529 . . . . . . . . . 10  |-  ( x  =  z  ->  (
x  e.  ( 1 ... M )  <->  z  e.  ( 1 ... M
) ) )
8 eleq1 2529 . . . . . . . . . 10  |-  ( y  =  w  ->  (
y  e.  ( 1 ... N )  <->  w  e.  ( 1 ... N
) ) )
97, 8bi2anan9 873 . . . . . . . . 9  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  <->  ( z  e.  ( 1 ... M
)  /\  w  e.  ( 1 ... N
) ) ) )
10 ancom 450 . . . . . . . . 9  |-  ( ( z  e.  ( 1 ... M )  /\  w  e.  ( 1 ... N ) )  <-> 
( w  e.  ( 1 ... N )  /\  z  e.  ( 1 ... M ) ) )
119, 10syl6bb 261 . . . . . . . 8  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  <->  ( w  e.  ( 1 ... N
)  /\  z  e.  ( 1 ... M
) ) ) )
12 oveq1 6303 . . . . . . . . 9  |-  ( x  =  z  ->  (
x  x.  Q )  =  ( z  x.  Q ) )
13 oveq1 6303 . . . . . . . . 9  |-  ( y  =  w  ->  (
y  x.  P )  =  ( w  x.  P ) )
1412, 13breqan12d 4471 . . . . . . . 8  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ( x  x.  Q )  <  (
y  x.  P )  <-> 
( z  x.  Q
)  <  ( w  x.  P ) ) )
1511, 14anbi12d 710 . . . . . . 7  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) )  <->  ( (
w  e.  ( 1 ... N )  /\  z  e.  ( 1 ... M ) )  /\  ( z  x.  Q )  <  (
w  x.  P ) ) ) )
1615ancoms 453 . . . . . 6  |-  ( ( y  =  w  /\  x  =  z )  ->  ( ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) )  <->  ( (
w  e.  ( 1 ... N )  /\  z  e.  ( 1 ... M ) )  /\  ( z  x.  Q )  <  (
w  x.  P ) ) ) )
1716cbvopabv 4526 . . . . 5  |-  { <. y ,  x >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) }  =  { <. w ,  z
>.  |  ( (
w  e.  ( 1 ... N )  /\  z  e.  ( 1 ... M ) )  /\  ( z  x.  Q )  <  (
w  x.  P ) ) }
181, 2, 4, 5, 6, 17lgsquadlem2 23755 . . . 4  |-  ( ph  ->  ( P  /L
Q )  =  (
-u 1 ^ ( # `
 { <. y ,  x >.  |  (
( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) } ) ) )
19 relopab 5138 . . . . . . . 8  |-  Rel  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }
20 fzfid 12085 . . . . . . . . . 10  |-  ( ph  ->  ( 1 ... M
)  e.  Fin )
21 fzfid 12085 . . . . . . . . . 10  |-  ( ph  ->  ( 1 ... N
)  e.  Fin )
22 xpfi 7809 . . . . . . . . . 10  |-  ( ( ( 1 ... M
)  e.  Fin  /\  ( 1 ... N
)  e.  Fin )  ->  ( ( 1 ... M )  X.  (
1 ... N ) )  e.  Fin )
2320, 21, 22syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( ( 1 ... M )  X.  (
1 ... N ) )  e.  Fin )
24 opabssxp 5083 . . . . . . . . 9  |-  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) }  C_  ( ( 1 ... M )  X.  (
1 ... N ) )
25 ssfi 7759 . . . . . . . . 9  |-  ( ( ( ( 1 ... M )  X.  (
1 ... N ) )  e.  Fin  /\  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } 
C_  ( ( 1 ... M )  X.  ( 1 ... N
) ) )  ->  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) }  e.  Fin )
2623, 24, 25sylancl 662 . . . . . . . 8  |-  ( ph  ->  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) }  e.  Fin )
27 cnven 7610 . . . . . . . 8  |-  ( ( Rel  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) }  /\  {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }  e.  Fin )  ->  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) }  ~~  `' { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) } )
2819, 26, 27sylancr 663 . . . . . . 7  |-  ( ph  ->  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) }  ~~  `' { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) } )
29 cnvopab 5414 . . . . . . 7  |-  `' { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }  =  { <. y ,  x >.  |  (
( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) }
3028, 29syl6breq 4495 . . . . . 6  |-  ( ph  ->  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) }  ~~  { <. y ,  x >.  |  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } )
31 hasheni 12423 . . . . . 6  |-  ( {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } 
~~  { <. y ,  x >.  |  (
( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) }  ->  (
# `  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) } )  =  ( # `  { <. y ,  x >.  |  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } ) )
3230, 31syl 16 . . . . 5  |-  ( ph  ->  ( # `  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } )  =  ( # `  { <. y ,  x >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } ) )
3332oveq2d 6312 . . . 4  |-  ( ph  ->  ( -u 1 ^ ( # `  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } ) )  =  (
-u 1 ^ ( # `
 { <. y ,  x >.  |  (
( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) } ) ) )
3418, 33eqtr4d 2501 . . 3  |-  ( ph  ->  ( P  /L
Q )  =  (
-u 1 ^ ( # `
 { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) } ) ) )
35 lgsquad.6 . . . 4  |-  S  =  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( y  x.  P )  <  (
x  x.  Q ) ) }
362, 1, 3, 6, 5, 35lgsquadlem2 23755 . . 3  |-  ( ph  ->  ( Q  /L
P )  =  (
-u 1 ^ ( # `
 S ) ) )
3734, 36oveq12d 6314 . 2  |-  ( ph  ->  ( ( P  /L Q )  x.  ( Q  /L
P ) )  =  ( ( -u 1 ^ ( # `  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } ) )  x.  ( -u 1 ^ ( # `  S ) ) ) )
38 neg1cn 10660 . . . 4  |-  -u 1  e.  CC
3938a1i 11 . . 3  |-  ( ph  -> 
-u 1  e.  CC )
40 opabssxp 5083 . . . . . 6  |-  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( y  x.  P )  < 
( x  x.  Q
) ) }  C_  ( ( 1 ... M )  X.  (
1 ... N ) )
4135, 40eqsstri 3529 . . . . 5  |-  S  C_  ( ( 1 ... M )  X.  (
1 ... N ) )
42 ssfi 7759 . . . . 5  |-  ( ( ( ( 1 ... M )  X.  (
1 ... N ) )  e.  Fin  /\  S  C_  ( ( 1 ... M )  X.  (
1 ... N ) ) )  ->  S  e.  Fin )
4323, 41, 42sylancl 662 . . . 4  |-  ( ph  ->  S  e.  Fin )
44 hashcl 12430 . . . 4  |-  ( S  e.  Fin  ->  ( # `
 S )  e. 
NN0 )
4543, 44syl 16 . . 3  |-  ( ph  ->  ( # `  S
)  e.  NN0 )
46 hashcl 12430 . . . 4  |-  ( {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }  e.  Fin  ->  ( # `
 { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) } )  e.  NN0 )
4726, 46syl 16 . . 3  |-  ( ph  ->  ( # `  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } )  e.  NN0 )
4839, 45, 47expaddd 12314 . 2  |-  ( ph  ->  ( -u 1 ^ ( ( # `  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } )  +  ( # `  S ) ) )  =  ( ( -u
1 ^ ( # `  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) } ) )  x.  ( -u 1 ^ ( # `  S
) ) ) )
491eldifad 3483 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  Q  e.  Prime )
5049adantr 465 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  Q  e.  Prime )
51 prmnn 14231 . . . . . . . . . . . . . . . 16  |-  ( Q  e.  Prime  ->  Q  e.  NN )
5250, 51syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  Q  e.  NN )
53 oddprm 14350 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( Q  e.  ( Prime  \  {
2 } )  -> 
( ( Q  - 
1 )  /  2
)  e.  NN )
541, 53syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( Q  - 
1 )  /  2
)  e.  NN )
555, 54syl5eqel 2549 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  N  e.  NN )
5655adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  N  e.  NN )
5756nnzd 10989 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  N  e.  ZZ )
58 prmz 14232 . . . . . . . . . . . . . . . . . . . 20  |-  ( Q  e.  Prime  ->  Q  e.  ZZ )
5950, 58syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  Q  e.  ZZ )
60 peano2zm 10928 . . . . . . . . . . . . . . . . . . 19  |-  ( Q  e.  ZZ  ->  ( Q  -  1 )  e.  ZZ )
6159, 60syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( Q  -  1 )  e.  ZZ )
6256nnred 10571 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  N  e.  RR )
6361zred 10990 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( Q  -  1 )  e.  RR )
64 prmuz2 14246 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( Q  e.  Prime  ->  Q  e.  ( ZZ>= `  2 )
)
6550, 64syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  Q  e.  ( ZZ>= ` 
2 ) )
66 uz2m1nn 11181 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( Q  e.  ( ZZ>= `  2
)  ->  ( Q  -  1 )  e.  NN )
6765, 66syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( Q  -  1 )  e.  NN )
6867nnrpd 11280 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( Q  -  1 )  e.  RR+ )
69 rphalflt 11271 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( Q  -  1 )  e.  RR+  ->  ( ( Q  -  1 )  /  2 )  < 
( Q  -  1 ) )
7068, 69syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( ( Q  - 
1 )  /  2
)  <  ( Q  -  1 ) )
715, 70syl5eqbr 4489 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  N  <  ( Q  - 
1 ) )
7262, 63, 71ltled 9750 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  N  <_  ( Q  - 
1 ) )
73 eluz2 11112 . . . . . . . . . . . . . . . . . 18  |-  ( ( Q  -  1 )  e.  ( ZZ>= `  N
)  <->  ( N  e.  ZZ  /\  ( Q  -  1 )  e.  ZZ  /\  N  <_ 
( Q  -  1 ) ) )
7457, 61, 72, 73syl3anbrc 1180 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( Q  -  1 )  e.  ( ZZ>= `  N ) )
75 fzss2 11748 . . . . . . . . . . . . . . . . 17  |-  ( ( Q  -  1 )  e.  ( ZZ>= `  N
)  ->  ( 1 ... N )  C_  ( 1 ... ( Q  -  1 ) ) )
7674, 75syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( 1 ... N
)  C_  ( 1 ... ( Q  - 
1 ) ) )
77 simprr 757 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
y  e.  ( 1 ... N ) )
7876, 77sseldd 3500 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
y  e.  ( 1 ... ( Q  - 
1 ) ) )
79 fzm1ndvds 14049 . . . . . . . . . . . . . . 15  |-  ( ( Q  e.  NN  /\  y  e.  ( 1 ... ( Q  - 
1 ) ) )  ->  -.  Q  ||  y
)
8052, 78, 79syl2anc 661 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  -.  Q  ||  y )
814adantr 465 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  Q  =/=  P )
822eldifad 3483 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  P  e.  Prime )
8382adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  P  e.  Prime )
84 prmrp 14253 . . . . . . . . . . . . . . . . 17  |-  ( ( Q  e.  Prime  /\  P  e.  Prime )  ->  (
( Q  gcd  P
)  =  1  <->  Q  =/=  P ) )
8550, 83, 84syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( ( Q  gcd  P )  =  1  <->  Q  =/=  P ) )
8681, 85mpbird 232 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( Q  gcd  P
)  =  1 )
87 prmz 14232 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  Prime  ->  P  e.  ZZ )
8883, 87syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  P  e.  ZZ )
89 elfzelz 11713 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( 1 ... N )  ->  y  e.  ZZ )
9089ad2antll 728 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
y  e.  ZZ )
91 coprmdvds 14254 . . . . . . . . . . . . . . . 16  |-  ( ( Q  e.  ZZ  /\  P  e.  ZZ  /\  y  e.  ZZ )  ->  (
( Q  ||  ( P  x.  y )  /\  ( Q  gcd  P
)  =  1 )  ->  Q  ||  y
) )
9259, 88, 90, 91syl3anc 1228 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( ( Q  ||  ( P  x.  y
)  /\  ( Q  gcd  P )  =  1 )  ->  Q  ||  y
) )
9386, 92mpan2d 674 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( Q  ||  ( P  x.  y )  ->  Q  ||  y ) )
9480, 93mtod 177 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  -.  Q  ||  ( P  x.  y ) )
95 prmnn 14231 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  Prime  ->  P  e.  NN )
9683, 95syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  P  e.  NN )
9796nncnd 10572 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  P  e.  CC )
98 elfznn 11739 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( 1 ... N )  ->  y  e.  NN )
9998ad2antll 728 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
y  e.  NN )
10099nncnd 10572 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
y  e.  CC )
10197, 100mulcomd 9634 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( P  x.  y
)  =  ( y  x.  P ) )
102101breq2d 4468 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( Q  ||  ( P  x.  y )  <->  Q 
||  ( y  x.  P ) ) )
10394, 102mtbid 300 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  -.  Q  ||  ( y  x.  P ) )
104 elfzelz 11713 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( 1 ... M )  ->  x  e.  ZZ )
105104ad2antrl 727 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  x  e.  ZZ )
106 dvdsmul2 14017 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  Q  e.  ZZ )  ->  Q  ||  ( x  x.  Q ) )
107105, 59, 106syl2anc 661 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  Q  ||  ( x  x.  Q ) )
108 breq2 4460 . . . . . . . . . . . . . 14  |-  ( ( x  x.  Q )  =  ( y  x.  P )  ->  ( Q  ||  ( x  x.  Q )  <->  Q  ||  (
y  x.  P ) ) )
109107, 108syl5ibcom 220 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( ( x  x.  Q )  =  ( y  x.  P )  ->  Q  ||  (
y  x.  P ) ) )
110109necon3bd 2669 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( -.  Q  ||  ( y  x.  P
)  ->  ( x  x.  Q )  =/=  (
y  x.  P ) ) )
111103, 110mpd 15 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( x  x.  Q
)  =/=  ( y  x.  P ) )
112 elfznn 11739 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 1 ... M )  ->  x  e.  NN )
113112ad2antrl 727 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  x  e.  NN )
114113, 52nnmulcld 10604 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( x  x.  Q
)  e.  NN )
115114nnred 10571 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( x  x.  Q
)  e.  RR )
11699, 96nnmulcld 10604 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( y  x.  P
)  e.  NN )
117116nnred 10571 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( y  x.  P
)  e.  RR )
118115, 117lttri2d 9741 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( ( x  x.  Q )  =/=  (
y  x.  P )  <-> 
( ( x  x.  Q )  <  (
y  x.  P )  \/  ( y  x.  P )  <  (
x  x.  Q ) ) ) )
119111, 118mpbid 210 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( ( x  x.  Q )  <  (
y  x.  P )  \/  ( y  x.  P )  <  (
x  x.  Q ) ) )
120119ex 434 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  ->  (
( x  x.  Q
)  <  ( y  x.  P )  \/  (
y  x.  P )  <  ( x  x.  Q ) ) ) )
121120pm4.71rd 635 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  <->  ( (
( x  x.  Q
)  <  ( y  x.  P )  \/  (
y  x.  P )  <  ( x  x.  Q ) )  /\  ( x  e.  (
1 ... M )  /\  y  e.  ( 1 ... N ) ) ) ) )
122 ancom 450 . . . . . . . 8  |-  ( ( ( ( x  x.  Q )  <  (
y  x.  P )  \/  ( y  x.  P )  <  (
x  x.  Q ) )  /\  ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) ) )  <->  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  < 
( y  x.  P
)  \/  ( y  x.  P )  < 
( x  x.  Q
) ) ) )
123121, 122syl6rbb 262 . . . . . . 7  |-  ( ph  ->  ( ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
( x  x.  Q
)  <  ( y  x.  P )  \/  (
y  x.  P )  <  ( x  x.  Q ) ) )  <-> 
( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) ) ) )
124123opabbidv 4520 . . . . . 6  |-  ( ph  ->  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  < 
( y  x.  P
)  \/  ( y  x.  P )  < 
( x  x.  Q
) ) ) }  =  { <. x ,  y >.  |  ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) ) } )
125 unopab 4532 . . . . . . 7  |-  ( {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }  u.  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( y  x.  P )  < 
( x  x.  Q
) ) } )  =  { <. x ,  y >.  |  ( ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) )  \/  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) }
12635uneq2i 3651 . . . . . . 7  |-  ( {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }  u.  S )  =  ( { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) }  u.  {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) } )
127 andi 867 . . . . . . . 8  |-  ( ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  <  ( y  x.  P )  \/  (
y  x.  P )  <  ( x  x.  Q ) ) )  <-> 
( ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) )  \/  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) )
128127opabbii 4521 . . . . . . 7  |-  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  <  ( y  x.  P )  \/  (
y  x.  P )  <  ( x  x.  Q ) ) ) }  =  { <. x ,  y >.  |  ( ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) )  \/  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) }
129125, 126, 1283eqtr4i 2496 . . . . . 6  |-  ( {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }  u.  S )  =  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  < 
( y  x.  P
)  \/  ( y  x.  P )  < 
( x  x.  Q
) ) ) }
130 df-xp 5014 . . . . . 6  |-  ( ( 1 ... M )  X.  ( 1 ... N ) )  =  { <. x ,  y
>.  |  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) }
131124, 129, 1303eqtr4g 2523 . . . . 5  |-  ( ph  ->  ( { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) }  u.  S )  =  ( ( 1 ... M
)  X.  ( 1 ... N ) ) )
132131fveq2d 5876 . . . 4  |-  ( ph  ->  ( # `  ( { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) }  u.  S
) )  =  (
# `  ( (
1 ... M )  X.  ( 1 ... N
) ) ) )
133 inopab 5143 . . . . . . 7  |-  ( {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }  i^i  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( y  x.  P )  < 
( x  x.  Q
) ) } )  =  { <. x ,  y >.  |  ( ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) )  /\  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) }
13435ineq2i 3693 . . . . . . 7  |-  ( {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }  i^i  S )  =  ( { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) }  i^i  {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) } )
135 anandi 828 . . . . . . . 8  |-  ( ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) )  <-> 
( ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) )  /\  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) )
136135opabbii 4521 . . . . . . 7  |-  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) }  =  { <. x ,  y >.  |  ( ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) )  /\  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) }
137133, 134, 1363eqtr4i 2496 . . . . . 6  |-  ( {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }  i^i  S )  =  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  < 
( y  x.  P
)  /\  ( y  x.  P )  <  (
x  x.  Q ) ) ) }
138 ltnsym2 9701 . . . . . . . . . . . 12  |-  ( ( ( x  x.  Q
)  e.  RR  /\  ( y  x.  P
)  e.  RR )  ->  -.  ( (
x  x.  Q )  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) )
139115, 117, 138syl2anc 661 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  -.  ( ( x  x.  Q )  <  (
y  x.  P )  /\  ( y  x.  P )  <  (
x  x.  Q ) ) )
140139ex 434 . . . . . . . . . 10  |-  ( ph  ->  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  ->  -.  ( ( x  x.  Q )  <  (
y  x.  P )  /\  ( y  x.  P )  <  (
x  x.  Q ) ) ) )
141 imnan 422 . . . . . . . . . 10  |-  ( ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  ->  -.  (
( x  x.  Q
)  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) )  <->  -.  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
( x  x.  Q
)  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) )
142140, 141sylib 196 . . . . . . . . 9  |-  ( ph  ->  -.  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
( x  x.  Q
)  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) )
143142nexdv 1885 . . . . . . . 8  |-  ( ph  ->  -.  E. y ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) )
144143nexdv 1885 . . . . . . 7  |-  ( ph  ->  -.  E. x E. y ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
( x  x.  Q
)  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) )
145 opabn0 4787 . . . . . . . 8  |-  ( {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
( x  x.  Q
)  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) }  =/=  (/)  <->  E. x E. y ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
( x  x.  Q
)  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) )
146145necon1bbii 2721 . . . . . . 7  |-  ( -. 
E. x E. y
( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
( x  x.  Q
)  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) )  <->  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  < 
( y  x.  P
)  /\  ( y  x.  P )  <  (
x  x.  Q ) ) ) }  =  (/) )
147144, 146sylib 196 . . . . . 6  |-  ( ph  ->  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  < 
( y  x.  P
)  /\  ( y  x.  P )  <  (
x  x.  Q ) ) ) }  =  (/) )
148137, 147syl5eq 2510 . . . . 5  |-  ( ph  ->  ( { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) }  i^i  S )  =  (/) )
149 hashun 12452 . . . . 5  |-  ( ( { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) }  e.  Fin  /\  S  e.  Fin  /\  ( { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) }  i^i  S
)  =  (/) )  -> 
( # `  ( {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }  u.  S ) )  =  ( ( # `  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) } )  +  ( # `  S
) ) )
15026, 43, 148, 149syl3anc 1228 . . . 4  |-  ( ph  ->  ( # `  ( { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) }  u.  S
) )  =  ( ( # `  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } )  +  ( # `  S ) ) )
151 hashxp 12495 . . . . . 6  |-  ( ( ( 1 ... M
)  e.  Fin  /\  ( 1 ... N
)  e.  Fin )  ->  ( # `  (
( 1 ... M
)  X.  ( 1 ... N ) ) )  =  ( (
# `  ( 1 ... M ) )  x.  ( # `  (
1 ... N ) ) ) )
15220, 21, 151syl2anc 661 . . . . 5  |-  ( ph  ->  ( # `  (
( 1 ... M
)  X.  ( 1 ... N ) ) )  =  ( (
# `  ( 1 ... M ) )  x.  ( # `  (
1 ... N ) ) ) )
153 oddprm 14350 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
1542, 153syl 16 . . . . . . . . 9  |-  ( ph  ->  ( ( P  - 
1 )  /  2
)  e.  NN )
1556, 154syl5eqel 2549 . . . . . . . 8  |-  ( ph  ->  M  e.  NN )
156155nnnn0d 10873 . . . . . . 7  |-  ( ph  ->  M  e.  NN0 )
157 hashfz1 12421 . . . . . . 7  |-  ( M  e.  NN0  ->  ( # `  ( 1 ... M
) )  =  M )
158156, 157syl 16 . . . . . 6  |-  ( ph  ->  ( # `  (
1 ... M ) )  =  M )
15955nnnn0d 10873 . . . . . . 7  |-  ( ph  ->  N  e.  NN0 )
160 hashfz1 12421 . . . . . . 7  |-  ( N  e.  NN0  ->  ( # `  ( 1 ... N
) )  =  N )
161159, 160syl 16 . . . . . 6  |-  ( ph  ->  ( # `  (
1 ... N ) )  =  N )
162158, 161oveq12d 6314 . . . . 5  |-  ( ph  ->  ( ( # `  (
1 ... M ) )  x.  ( # `  (
1 ... N ) ) )  =  ( M  x.  N ) )
163152, 162eqtrd 2498 . . . 4  |-  ( ph  ->  ( # `  (
( 1 ... M
)  X.  ( 1 ... N ) ) )  =  ( M  x.  N ) )
164132, 150, 1633eqtr3d 2506 . . 3  |-  ( ph  ->  ( ( # `  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } )  +  ( # `  S ) )  =  ( M  x.  N
) )
165164oveq2d 6312 . 2  |-  ( ph  ->  ( -u 1 ^ ( ( # `  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } )  +  ( # `  S ) ) )  =  ( -u 1 ^ ( M  x.  N ) ) )
16637, 48, 1653eqtr2d 2504 1  |-  ( ph  ->  ( ( P  /L Q )  x.  ( Q  /L
P ) )  =  ( -u 1 ^ ( M  x.  N
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1395   E.wex 1613    e. wcel 1819    =/= wne 2652    \ cdif 3468    u. cun 3469    i^i cin 3470    C_ wss 3471   (/)c0 3793   {csn 4032   class class class wbr 4456   {copab 4514    X. cxp 5006   `'ccnv 5007   Rel wrel 5013   ` cfv 5594  (class class class)co 6296    ~~ cen 7532   Fincfn 7535   CCcc 9507   RRcr 9508   1c1 9510    + caddc 9512    x. cmul 9514    < clt 9645    <_ cle 9646    - cmin 9824   -ucneg 9825    / cdiv 10227   NNcn 10556   2c2 10606   NN0cn0 10816   ZZcz 10885   ZZ>=cuz 11106   RR+crp 11245   ...cfz 11697   ^cexp 12168   #chash 12407    || cdvds 13997    gcd cgcd 14155   Primecprime 14228    /Lclgs 23694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587  ax-addf 9588  ax-mulf 9589
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-disj 4428  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-om 6700  df-1st 6799  df-2nd 6800  df-supp 6918  df-tpos 6973  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-er 7329  df-ec 7331  df-qs 7335  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-fsupp 7848  df-sup 7919  df-oi 7953  df-card 8337  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-q 11208  df-rp 11246  df-fz 11698  df-fzo 11821  df-fl 11931  df-mod 11999  df-seq 12110  df-exp 12169  df-hash 12408  df-cj 12943  df-re 12944  df-im 12945  df-sqrt 13079  df-abs 13080  df-clim 13322  df-sum 13520  df-dvds 13998  df-gcd 14156  df-prm 14229  df-phi 14307  df-pc 14372  df-struct 14645  df-ndx 14646  df-slot 14647  df-base 14648  df-sets 14649  df-ress 14650  df-plusg 14724  df-mulr 14725  df-starv 14726  df-sca 14727  df-vsca 14728  df-ip 14729  df-tset 14730  df-ple 14731  df-ds 14733  df-unif 14734  df-0g 14858  df-gsum 14859  df-imas 14924  df-qus 14925  df-mgm 15998  df-sgrp 16037  df-mnd 16047  df-mhm 16092  df-submnd 16093  df-grp 16183  df-minusg 16184  df-sbg 16185  df-mulg 16186  df-subg 16324  df-nsg 16325  df-eqg 16326  df-ghm 16391  df-cntz 16481  df-cmn 16926  df-abl 16927  df-mgp 17268  df-ur 17280  df-ring 17326  df-cring 17327  df-oppr 17398  df-dvdsr 17416  df-unit 17417  df-invr 17447  df-dvr 17458  df-rnghom 17490  df-drng 17524  df-field 17525  df-subrg 17553  df-lmod 17640  df-lss 17705  df-lsp 17744  df-sra 17944  df-rgmod 17945  df-lidl 17946  df-rsp 17947  df-2idl 18006  df-nzr 18032  df-rlreg 18057  df-domn 18058  df-idom 18059  df-cnfld 18547  df-zring 18615  df-zrh 18667  df-zn 18670  df-lgs 23695
This theorem is referenced by:  lgsquad  23757
  Copyright terms: Public domain W3C validator