MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsquad3 Structured version   Unicode version

Theorem lgsquad3 22705
Description: Extend lgsquad2 22704 to integers which share a factor. (Contributed by Mario Carneiro, 19-Jun-2015.)
Assertion
Ref Expression
lgsquad3  |-  ( ( ( M  e.  NN  /\ 
-.  2  ||  M
)  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  -> 
( M  /L
N )  =  ( ( -u 1 ^ ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) )  x.  ( N  /L M ) ) )

Proof of Theorem lgsquad3
StepHypRef Expression
1 simplrl 759 . . . . . . . . . 10  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  N  e.  NN )
2 nnz 10673 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  ZZ )
31, 2syl 16 . . . . . . . . 9  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  N  e.  ZZ )
4 nnz 10673 . . . . . . . . . 10  |-  ( M  e.  NN  ->  M  e.  ZZ )
54ad3antrrr 729 . . . . . . . . 9  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  M  e.  ZZ )
6 lgscl 22654 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  /L
M )  e.  ZZ )
73, 5, 6syl2anc 661 . . . . . . . 8  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( N  /L M )  e.  ZZ )
87zred 10752 . . . . . . 7  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( N  /L M )  e.  RR )
9 absresq 12796 . . . . . . 7  |-  ( ( N  /L M )  e.  RR  ->  ( ( abs `  ( N  /L M ) ) ^ 2 )  =  ( ( N  /L M ) ^ 2 ) )
108, 9syl 16 . . . . . 6  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( ( abs `  ( N  /L
M ) ) ^
2 )  =  ( ( N  /L
M ) ^ 2 ) )
11 gcdcom 13709 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  gcd  M
)  =  ( M  gcd  N ) )
123, 5, 11syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( N  gcd  M )  =  ( M  gcd  N ) )
13 simpr 461 . . . . . . . . . 10  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( M  gcd  N )  =  1 )
1412, 13eqtrd 2475 . . . . . . . . 9  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( N  gcd  M )  =  1 )
15 lgsabs1 22678 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( abs `  ( N  /L M ) )  =  1  <->  ( N  gcd  M )  =  1 ) )
163, 5, 15syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( ( abs `  ( N  /L
M ) )  =  1  <->  ( N  gcd  M )  =  1 ) )
1714, 16mpbird 232 . . . . . . . 8  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( abs `  ( N  /L M ) )  =  1 )
1817oveq1d 6111 . . . . . . 7  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( ( abs `  ( N  /L
M ) ) ^
2 )  =  ( 1 ^ 2 ) )
19 sq1 11965 . . . . . . 7  |-  ( 1 ^ 2 )  =  1
2018, 19syl6eq 2491 . . . . . 6  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( ( abs `  ( N  /L
M ) ) ^
2 )  =  1 )
217zcnd 10753 . . . . . . 7  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( N  /L M )  e.  CC )
2221sqvald 12010 . . . . . 6  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( ( N  /L M ) ^ 2 )  =  ( ( N  /L M )  x.  ( N  /L
M ) ) )
2310, 20, 223eqtr3d 2483 . . . . 5  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  1  =  ( ( N  /L
M )  x.  ( N  /L M ) ) )
2423oveq2d 6112 . . . 4  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( ( M  /L N )  x.  1 )  =  ( ( M  /L N )  x.  ( ( N  /L M )  x.  ( N  /L
M ) ) ) )
25 lgscl 22654 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  /L
N )  e.  ZZ )
265, 3, 25syl2anc 661 . . . . . 6  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( M  /L N )  e.  ZZ )
2726zcnd 10753 . . . . 5  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( M  /L N )  e.  CC )
2827, 21, 21mulassd 9414 . . . 4  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( ( ( M  /L N )  x.  ( N  /L M ) )  x.  ( N  /L M ) )  =  ( ( M  /L N )  x.  ( ( N  /L M )  x.  ( N  /L M ) ) ) )
2924, 28eqtr4d 2478 . . 3  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( ( M  /L N )  x.  1 )  =  ( ( ( M  /L N )  x.  ( N  /L M ) )  x.  ( N  /L M ) ) )
3027mulid1d 9408 . . 3  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( ( M  /L N )  x.  1 )  =  ( M  /L
N ) )
31 simplll 757 . . . . 5  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  M  e.  NN )
32 simpllr 758 . . . . 5  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  -.  2  ||  M )
33 simplrr 760 . . . . 5  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  -.  2  ||  N )
3431, 32, 1, 33, 13lgsquad2 22704 . . . 4  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( ( M  /L N )  x.  ( N  /L M ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
3534oveq1d 6111 . . 3  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( ( ( M  /L N )  x.  ( N  /L M ) )  x.  ( N  /L M ) )  =  ( (
-u 1 ^ (
( ( M  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) ) )  x.  ( N  /L M ) ) )
3629, 30, 353eqtr3d 2483 . 2  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  ( M  gcd  N )  =  1 )  ->  ( M  /L N )  =  ( ( -u 1 ^ ( ( ( M  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) )  x.  ( N  /L
M ) ) )
37 lgsne0 22677 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  /L N )  =/=  0  <->  ( M  gcd  N )  =  1 ) )
3837necon1bbid 2670 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  gcd  N )  =  1  <->  ( M  /L N )  =  0 ) )
394, 2, 38syl2an 477 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( -.  ( M  gcd  N )  =  1  <->  ( M  /L N )  =  0 ) )
4039ad2ant2r 746 . . . . 5  |-  ( ( ( M  e.  NN  /\ 
-.  2  ||  M
)  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  -> 
( -.  ( M  gcd  N )  =  1  <->  ( M  /L N )  =  0 ) )
4140biimpa 484 . . . 4  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  ( M  /L N )  =  0 )
42 neg1cn 10430 . . . . . . 7  |-  -u 1  e.  CC
4342a1i 11 . . . . . 6  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  -u 1  e.  CC )
44 neg1ne0 10432 . . . . . . 7  |-  -u 1  =/=  0
4544a1i 11 . . . . . 6  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  -u 1  =/=  0 )
464ad3antrrr 729 . . . . . . . . 9  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  M  e.  ZZ )
47 simpllr 758 . . . . . . . . 9  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  -.  2  ||  M )
48 1zzd 10682 . . . . . . . . 9  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  1  e.  ZZ )
49 2prm 13784 . . . . . . . . . 10  |-  2  e.  Prime
50 nprmdvds1 13802 . . . . . . . . . 10  |-  ( 2  e.  Prime  ->  -.  2  ||  1 )
5149, 50mp1i 12 . . . . . . . . 9  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  -.  2  ||  1 )
52 omoe 13884 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\ 
-.  2  ||  M
)  /\  ( 1  e.  ZZ  /\  -.  2  ||  1 ) )  ->  2  ||  ( M  -  1 ) )
5346, 47, 48, 51, 52syl22anc 1219 . . . . . . . 8  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  2  ||  ( M  -  1 ) )
54 2z 10683 . . . . . . . . . 10  |-  2  e.  ZZ
5554a1i 11 . . . . . . . . 9  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  2  e.  ZZ )
56 2ne0 10419 . . . . . . . . . 10  |-  2  =/=  0
5756a1i 11 . . . . . . . . 9  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  2  =/=  0 )
58 peano2zm 10693 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
5946, 58syl 16 . . . . . . . . 9  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  ( M  -  1 )  e.  ZZ )
60 dvdsval2 13543 . . . . . . . . 9  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  ( M  -  1 )  e.  ZZ )  -> 
( 2  ||  ( M  -  1 )  <-> 
( ( M  - 
1 )  /  2
)  e.  ZZ ) )
6155, 57, 59, 60syl3anc 1218 . . . . . . . 8  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  (
2  ||  ( M  -  1 )  <->  ( ( M  -  1 )  /  2 )  e.  ZZ ) )
6253, 61mpbid 210 . . . . . . 7  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  (
( M  -  1 )  /  2 )  e.  ZZ )
632adantr 465 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  N  e.  ZZ )
6463ad2antlr 726 . . . . . . . . 9  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  N  e.  ZZ )
65 simplrr 760 . . . . . . . . 9  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  -.  2  ||  N )
66 omoe 13884 . . . . . . . . 9  |-  ( ( ( N  e.  ZZ  /\ 
-.  2  ||  N
)  /\  ( 1  e.  ZZ  /\  -.  2  ||  1 ) )  ->  2  ||  ( N  -  1 ) )
6764, 65, 48, 51, 66syl22anc 1219 . . . . . . . 8  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  2  ||  ( N  -  1 ) )
68 peano2zm 10693 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
6964, 68syl 16 . . . . . . . . 9  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  ( N  -  1 )  e.  ZZ )
70 dvdsval2 13543 . . . . . . . . 9  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  ( N  -  1 )  e.  ZZ )  -> 
( 2  ||  ( N  -  1 )  <-> 
( ( N  - 
1 )  /  2
)  e.  ZZ ) )
7155, 57, 69, 70syl3anc 1218 . . . . . . . 8  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  (
2  ||  ( N  -  1 )  <->  ( ( N  -  1 )  /  2 )  e.  ZZ ) )
7267, 71mpbid 210 . . . . . . 7  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  (
( N  -  1 )  /  2 )  e.  ZZ )
7362, 72zmulcld 10758 . . . . . 6  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  (
( ( M  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) )  e.  ZZ )
7443, 45, 73expclzd 12018 . . . . 5  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  ( -u 1 ^ ( ( ( M  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) )  e.  CC )
7574mul01d 9573 . . . 4  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  (
( -u 1 ^ (
( ( M  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) ) )  x.  0 )  =  0 )
7641, 75eqtr4d 2478 . . 3  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  ( M  /L N )  =  ( ( -u
1 ^ ( ( ( M  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) )  x.  0 ) )
77 lgsne0 22677 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( N  /L M )  =/=  0  <->  ( N  gcd  M )  =  1 ) )
7811eqeq1d 2451 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( N  gcd  M )  =  1  <->  ( M  gcd  N )  =  1 ) )
7977, 78bitrd 253 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( N  /L M )  =/=  0  <->  ( M  gcd  N )  =  1 ) )
802, 4, 79syl2anr 478 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( N  /L M )  =/=  0  <->  ( M  gcd  N )  =  1 ) )
8180necon1bbid 2670 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( -.  ( M  gcd  N )  =  1  <->  ( N  /L M )  =  0 ) )
8281ad2ant2r 746 . . . . 5  |-  ( ( ( M  e.  NN  /\ 
-.  2  ||  M
)  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  -> 
( -.  ( M  gcd  N )  =  1  <->  ( N  /L M )  =  0 ) )
8382biimpa 484 . . . 4  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  ( N  /L M )  =  0 )
8483oveq2d 6112 . . 3  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  (
( -u 1 ^ (
( ( M  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) ) )  x.  ( N  /L M ) )  =  ( (
-u 1 ^ (
( ( M  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) ) )  x.  0 ) )
8576, 84eqtr4d 2478 . 2  |-  ( ( ( ( M  e.  NN  /\  -.  2  ||  M )  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  /\  -.  ( M  gcd  N )  =  1 )  ->  ( M  /L N )  =  ( ( -u
1 ^ ( ( ( M  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) )  x.  ( N  /L M ) ) )
8636, 85pm2.61dan 789 1  |-  ( ( ( M  e.  NN  /\ 
-.  2  ||  M
)  /\  ( N  e.  NN  /\  -.  2  ||  N ) )  -> 
( M  /L
N )  =  ( ( -u 1 ^ ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) )  x.  ( N  /L M ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2611   class class class wbr 4297   ` cfv 5423  (class class class)co 6096   CCcc 9285   RRcr 9286   0cc0 9287   1c1 9288    x. cmul 9292    - cmin 9600   -ucneg 9601    / cdiv 9998   NNcn 10327   2c2 10376   ZZcz 10651   ^cexp 11870   abscabs 12728    || cdivides 13540    gcd cgcd 13695   Primecprime 13768    /Lclgs 22638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-inf2 7852  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364  ax-pre-sup 9365  ax-addf 9366  ax-mulf 9367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-disj 4268  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-se 4685  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-isom 5432  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-of 6325  df-om 6482  df-1st 6582  df-2nd 6583  df-supp 6696  df-tpos 6750  df-recs 6837  df-rdg 6871  df-1o 6925  df-2o 6926  df-oadd 6929  df-er 7106  df-ec 7108  df-qs 7112  df-map 7221  df-en 7316  df-dom 7317  df-sdom 7318  df-fin 7319  df-fsupp 7626  df-sup 7696  df-oi 7729  df-card 8114  df-cda 8342  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-div 9999  df-nn 10328  df-2 10385  df-3 10386  df-4 10387  df-5 10388  df-6 10389  df-7 10390  df-8 10391  df-9 10392  df-10 10393  df-n0 10585  df-z 10652  df-dec 10761  df-uz 10867  df-q 10959  df-rp 10997  df-fz 11443  df-fzo 11554  df-fl 11647  df-mod 11714  df-seq 11812  df-exp 11871  df-hash 12109  df-cj 12593  df-re 12594  df-im 12595  df-sqr 12729  df-abs 12730  df-clim 12971  df-sum 13169  df-dvds 13541  df-gcd 13696  df-prm 13769  df-phi 13846  df-pc 13909  df-struct 14181  df-ndx 14182  df-slot 14183  df-base 14184  df-sets 14185  df-ress 14186  df-plusg 14256  df-mulr 14257  df-starv 14258  df-sca 14259  df-vsca 14260  df-ip 14261  df-tset 14262  df-ple 14263  df-ds 14265  df-unif 14266  df-0g 14385  df-gsum 14386  df-imas 14451  df-divs 14452  df-mnd 15420  df-mhm 15469  df-submnd 15470  df-grp 15550  df-minusg 15551  df-sbg 15552  df-mulg 15553  df-subg 15683  df-nsg 15684  df-eqg 15685  df-ghm 15750  df-cntz 15840  df-cmn 16284  df-abl 16285  df-mgp 16597  df-ur 16609  df-rng 16652  df-cring 16653  df-oppr 16720  df-dvdsr 16738  df-unit 16739  df-invr 16769  df-dvr 16780  df-rnghom 16811  df-drng 16839  df-field 16840  df-subrg 16868  df-lmod 16955  df-lss 17019  df-lsp 17058  df-sra 17258  df-rgmod 17259  df-lidl 17260  df-rsp 17261  df-2idl 17319  df-nzr 17345  df-rlreg 17359  df-domn 17360  df-idom 17361  df-cnfld 17824  df-zring 17889  df-zrh 17940  df-zn 17943  df-lgs 22639
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator