MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsquad2lem2 Structured version   Unicode version

Theorem lgsquad2lem2 23835
Description: Lemma for lgsquad2 23836. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
lgsquad2.1  |-  ( ph  ->  M  e.  NN )
lgsquad2.2  |-  ( ph  ->  -.  2  ||  M
)
lgsquad2.3  |-  ( ph  ->  N  e.  NN )
lgsquad2.4  |-  ( ph  ->  -.  2  ||  N
)
lgsquad2.5  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
lgsquad2lem2.f  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
lgsquad2lem2.s  |-  ( ps  <->  A. x  e.  ( 1 ... k ) ( ( x  gcd  (
2  x.  N ) )  =  1  -> 
( ( x  /L N )  x.  ( N  /L
x ) )  =  ( -u 1 ^ ( ( ( x  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) ) )
Assertion
Ref Expression
lgsquad2lem2  |-  ( ph  ->  ( ( M  /L N )  x.  ( N  /L
M ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) )
Distinct variable groups:    m, M    x, m, N    ph, m, x
Allowed substitution hints:    ph( k)    ps( x, k, m)    M( x, k)    N( k)

Proof of Theorem lgsquad2lem2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 lgsquad2.1 . . . 4  |-  ( ph  ->  M  e.  NN )
2 2nn 10689 . . . . 5  |-  2  e.  NN
32a1i 11 . . . 4  |-  ( ph  ->  2  e.  NN )
4 lgsquad2.3 . . . 4  |-  ( ph  ->  N  e.  NN )
51nnzd 10964 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
6 2z 10892 . . . . . 6  |-  2  e.  ZZ
7 gcdcom 14245 . . . . . 6  |-  ( ( M  e.  ZZ  /\  2  e.  ZZ )  ->  ( M  gcd  2
)  =  ( 2  gcd  M ) )
85, 6, 7sylancl 660 . . . . 5  |-  ( ph  ->  ( M  gcd  2
)  =  ( 2  gcd  M ) )
9 lgsquad2.2 . . . . . 6  |-  ( ph  ->  -.  2  ||  M
)
10 2prm 14320 . . . . . . 7  |-  2  e.  Prime
11 coprm 14328 . . . . . . 7  |-  ( ( 2  e.  Prime  /\  M  e.  ZZ )  ->  ( -.  2  ||  M  <->  ( 2  gcd  M )  =  1 ) )
1210, 5, 11sylancr 661 . . . . . 6  |-  ( ph  ->  ( -.  2  ||  M 
<->  ( 2  gcd  M
)  =  1 ) )
139, 12mpbid 210 . . . . 5  |-  ( ph  ->  ( 2  gcd  M
)  =  1 )
148, 13eqtrd 2495 . . . 4  |-  ( ph  ->  ( M  gcd  2
)  =  1 )
15 rpmulgcd 14280 . . . 4  |-  ( ( ( M  e.  NN  /\  2  e.  NN  /\  N  e.  NN )  /\  ( M  gcd  2
)  =  1 )  ->  ( M  gcd  ( 2  x.  N
) )  =  ( M  gcd  N ) )
161, 3, 4, 14, 15syl31anc 1229 . . 3  |-  ( ph  ->  ( M  gcd  (
2  x.  N ) )  =  ( M  gcd  N ) )
17 lgsquad2.5 . . 3  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
1816, 17eqtrd 2495 . 2  |-  ( ph  ->  ( M  gcd  (
2  x.  N ) )  =  1 )
19 oveq1 6277 . . . . . . . 8  |-  ( m  =  1  ->  (
m  /L N )  =  ( 1  /L N ) )
20 oveq2 6278 . . . . . . . 8  |-  ( m  =  1  ->  ( N  /L m )  =  ( N  /L 1 ) )
2119, 20oveq12d 6288 . . . . . . 7  |-  ( m  =  1  ->  (
( m  /L
N )  x.  ( N  /L m ) )  =  ( ( 1  /L N )  x.  ( N  /L 1 ) ) )
22 oveq1 6277 . . . . . . . . . . . 12  |-  ( m  =  1  ->  (
m  -  1 )  =  ( 1  -  1 ) )
23 1m1e0 10600 . . . . . . . . . . . 12  |-  ( 1  -  1 )  =  0
2422, 23syl6eq 2511 . . . . . . . . . . 11  |-  ( m  =  1  ->  (
m  -  1 )  =  0 )
2524oveq1d 6285 . . . . . . . . . 10  |-  ( m  =  1  ->  (
( m  -  1 )  /  2 )  =  ( 0  / 
2 ) )
26 2cn 10602 . . . . . . . . . . 11  |-  2  e.  CC
27 2ne0 10624 . . . . . . . . . . 11  |-  2  =/=  0
2826, 27div0i 10274 . . . . . . . . . 10  |-  ( 0  /  2 )  =  0
2925, 28syl6eq 2511 . . . . . . . . 9  |-  ( m  =  1  ->  (
( m  -  1 )  /  2 )  =  0 )
3029oveq1d 6285 . . . . . . . 8  |-  ( m  =  1  ->  (
( ( m  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) )  =  ( 0  x.  ( ( N  - 
1 )  /  2
) ) )
3130oveq2d 6286 . . . . . . 7  |-  ( m  =  1  ->  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) )  =  ( -u 1 ^ ( 0  x.  ( ( N  - 
1 )  /  2
) ) ) )
3221, 31eqeq12d 2476 . . . . . 6  |-  ( m  =  1  ->  (
( ( m  /L N )  x.  ( N  /L
m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) )  <->  ( (
1  /L N )  x.  ( N  /L 1 ) )  =  ( -u
1 ^ ( 0  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
3332imbi2d 314 . . . . 5  |-  ( m  =  1  ->  (
( ( m  gcd  ( 2  x.  N
) )  =  1  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )  <-> 
( ( m  gcd  ( 2  x.  N
) )  =  1  ->  ( ( 1  /L N )  x.  ( N  /L 1 ) )  =  ( -u 1 ^ ( 0  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) )
3433imbi2d 314 . . . 4  |-  ( m  =  1  ->  (
( ph  ->  ( ( m  gcd  ( 2  x.  N ) )  =  1  ->  (
( m  /L
N )  x.  ( N  /L m ) )  =  ( -u
1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )  <->  ( ph  ->  ( ( m  gcd  ( 2  x.  N
) )  =  1  ->  ( ( 1  /L N )  x.  ( N  /L 1 ) )  =  ( -u 1 ^ ( 0  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) ) )
35 oveq1 6277 . . . . . . 7  |-  ( m  =  x  ->  (
m  gcd  ( 2  x.  N ) )  =  ( x  gcd  ( 2  x.  N
) ) )
3635eqeq1d 2456 . . . . . 6  |-  ( m  =  x  ->  (
( m  gcd  (
2  x.  N ) )  =  1  <->  (
x  gcd  ( 2  x.  N ) )  =  1 ) )
37 oveq1 6277 . . . . . . . 8  |-  ( m  =  x  ->  (
m  /L N )  =  ( x  /L N ) )
38 oveq2 6278 . . . . . . . 8  |-  ( m  =  x  ->  ( N  /L m )  =  ( N  /L x ) )
3937, 38oveq12d 6288 . . . . . . 7  |-  ( m  =  x  ->  (
( m  /L
N )  x.  ( N  /L m ) )  =  ( ( x  /L N )  x.  ( N  /L x ) ) )
40 oveq1 6277 . . . . . . . . . 10  |-  ( m  =  x  ->  (
m  -  1 )  =  ( x  - 
1 ) )
4140oveq1d 6285 . . . . . . . . 9  |-  ( m  =  x  ->  (
( m  -  1 )  /  2 )  =  ( ( x  -  1 )  / 
2 ) )
4241oveq1d 6285 . . . . . . . 8  |-  ( m  =  x  ->  (
( ( m  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) )  =  ( ( ( x  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) )
4342oveq2d 6286 . . . . . . 7  |-  ( m  =  x  ->  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) )  =  ( -u 1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
4439, 43eqeq12d 2476 . . . . . 6  |-  ( m  =  x  ->  (
( ( m  /L N )  x.  ( N  /L
m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) )  <->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
4536, 44imbi12d 318 . . . . 5  |-  ( m  =  x  ->  (
( ( m  gcd  ( 2  x.  N
) )  =  1  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )  <-> 
( ( x  gcd  ( 2  x.  N
) )  =  1  ->  ( ( x  /L N )  x.  ( N  /L x ) )  =  ( -u 1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) )
4645imbi2d 314 . . . 4  |-  ( m  =  x  ->  (
( ph  ->  ( ( m  gcd  ( 2  x.  N ) )  =  1  ->  (
( m  /L
N )  x.  ( N  /L m ) )  =  ( -u
1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )  <->  ( ph  ->  ( ( x  gcd  ( 2  x.  N
) )  =  1  ->  ( ( x  /L N )  x.  ( N  /L x ) )  =  ( -u 1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) ) )
47 oveq1 6277 . . . . . . 7  |-  ( m  =  y  ->  (
m  gcd  ( 2  x.  N ) )  =  ( y  gcd  ( 2  x.  N
) ) )
4847eqeq1d 2456 . . . . . 6  |-  ( m  =  y  ->  (
( m  gcd  (
2  x.  N ) )  =  1  <->  (
y  gcd  ( 2  x.  N ) )  =  1 ) )
49 oveq1 6277 . . . . . . . 8  |-  ( m  =  y  ->  (
m  /L N )  =  ( y  /L N ) )
50 oveq2 6278 . . . . . . . 8  |-  ( m  =  y  ->  ( N  /L m )  =  ( N  /L y ) )
5149, 50oveq12d 6288 . . . . . . 7  |-  ( m  =  y  ->  (
( m  /L
N )  x.  ( N  /L m ) )  =  ( ( y  /L N )  x.  ( N  /L y ) ) )
52 oveq1 6277 . . . . . . . . . 10  |-  ( m  =  y  ->  (
m  -  1 )  =  ( y  - 
1 ) )
5352oveq1d 6285 . . . . . . . . 9  |-  ( m  =  y  ->  (
( m  -  1 )  /  2 )  =  ( ( y  -  1 )  / 
2 ) )
5453oveq1d 6285 . . . . . . . 8  |-  ( m  =  y  ->  (
( ( m  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) )  =  ( ( ( y  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) )
5554oveq2d 6286 . . . . . . 7  |-  ( m  =  y  ->  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) )  =  ( -u 1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
5651, 55eqeq12d 2476 . . . . . 6  |-  ( m  =  y  ->  (
( ( m  /L N )  x.  ( N  /L
m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) )  <->  ( (
y  /L N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
5748, 56imbi12d 318 . . . . 5  |-  ( m  =  y  ->  (
( ( m  gcd  ( 2  x.  N
) )  =  1  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )  <-> 
( ( y  gcd  ( 2  x.  N
) )  =  1  ->  ( ( y  /L N )  x.  ( N  /L y ) )  =  ( -u 1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) )
5857imbi2d 314 . . . 4  |-  ( m  =  y  ->  (
( ph  ->  ( ( m  gcd  ( 2  x.  N ) )  =  1  ->  (
( m  /L
N )  x.  ( N  /L m ) )  =  ( -u
1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )  <->  ( ph  ->  ( ( y  gcd  ( 2  x.  N
) )  =  1  ->  ( ( y  /L N )  x.  ( N  /L y ) )  =  ( -u 1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) ) )
59 oveq1 6277 . . . . . . 7  |-  ( m  =  ( x  x.  y )  ->  (
m  gcd  ( 2  x.  N ) )  =  ( ( x  x.  y )  gcd  ( 2  x.  N
) ) )
6059eqeq1d 2456 . . . . . 6  |-  ( m  =  ( x  x.  y )  ->  (
( m  gcd  (
2  x.  N ) )  =  1  <->  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 ) )
61 oveq1 6277 . . . . . . . 8  |-  ( m  =  ( x  x.  y )  ->  (
m  /L N )  =  ( ( x  x.  y )  /L N ) )
62 oveq2 6278 . . . . . . . 8  |-  ( m  =  ( x  x.  y )  ->  ( N  /L m )  =  ( N  /L ( x  x.  y ) ) )
6361, 62oveq12d 6288 . . . . . . 7  |-  ( m  =  ( x  x.  y )  ->  (
( m  /L
N )  x.  ( N  /L m ) )  =  ( ( ( x  x.  y
)  /L N )  x.  ( N  /L ( x  x.  y ) ) ) )
64 oveq1 6277 . . . . . . . . . 10  |-  ( m  =  ( x  x.  y )  ->  (
m  -  1 )  =  ( ( x  x.  y )  - 
1 ) )
6564oveq1d 6285 . . . . . . . . 9  |-  ( m  =  ( x  x.  y )  ->  (
( m  -  1 )  /  2 )  =  ( ( ( x  x.  y )  -  1 )  / 
2 ) )
6665oveq1d 6285 . . . . . . . 8  |-  ( m  =  ( x  x.  y )  ->  (
( ( m  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) )  =  ( ( ( ( x  x.  y
)  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) )
6766oveq2d 6286 . . . . . . 7  |-  ( m  =  ( x  x.  y )  ->  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) )  =  ( -u 1 ^ ( ( ( ( x  x.  y
)  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
6863, 67eqeq12d 2476 . . . . . 6  |-  ( m  =  ( x  x.  y )  ->  (
( ( m  /L N )  x.  ( N  /L
m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) )  <->  ( (
( x  x.  y
)  /L N )  x.  ( N  /L ( x  x.  y ) ) )  =  ( -u
1 ^ ( ( ( ( x  x.  y )  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
6960, 68imbi12d 318 . . . . 5  |-  ( m  =  ( x  x.  y )  ->  (
( ( m  gcd  ( 2  x.  N
) )  =  1  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )  <-> 
( ( ( x  x.  y )  gcd  ( 2  x.  N
) )  =  1  ->  ( ( ( x  x.  y )  /L N )  x.  ( N  /L ( x  x.  y ) ) )  =  ( -u 1 ^ ( ( ( ( x  x.  y
)  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) )
7069imbi2d 314 . . . 4  |-  ( m  =  ( x  x.  y )  ->  (
( ph  ->  ( ( m  gcd  ( 2  x.  N ) )  =  1  ->  (
( m  /L
N )  x.  ( N  /L m ) )  =  ( -u
1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )  <->  ( ph  ->  ( ( ( x  x.  y )  gcd  ( 2  x.  N
) )  =  1  ->  ( ( ( x  x.  y )  /L N )  x.  ( N  /L ( x  x.  y ) ) )  =  ( -u 1 ^ ( ( ( ( x  x.  y
)  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) ) )
71 oveq1 6277 . . . . . . 7  |-  ( m  =  M  ->  (
m  gcd  ( 2  x.  N ) )  =  ( M  gcd  ( 2  x.  N
) ) )
7271eqeq1d 2456 . . . . . 6  |-  ( m  =  M  ->  (
( m  gcd  (
2  x.  N ) )  =  1  <->  ( M  gcd  ( 2  x.  N ) )  =  1 ) )
73 oveq1 6277 . . . . . . . 8  |-  ( m  =  M  ->  (
m  /L N )  =  ( M  /L N ) )
74 oveq2 6278 . . . . . . . 8  |-  ( m  =  M  ->  ( N  /L m )  =  ( N  /L M ) )
7573, 74oveq12d 6288 . . . . . . 7  |-  ( m  =  M  ->  (
( m  /L
N )  x.  ( N  /L m ) )  =  ( ( M  /L N )  x.  ( N  /L M ) ) )
76 oveq1 6277 . . . . . . . . . 10  |-  ( m  =  M  ->  (
m  -  1 )  =  ( M  - 
1 ) )
7776oveq1d 6285 . . . . . . . . 9  |-  ( m  =  M  ->  (
( m  -  1 )  /  2 )  =  ( ( M  -  1 )  / 
2 ) )
7877oveq1d 6285 . . . . . . . 8  |-  ( m  =  M  ->  (
( ( m  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) )  =  ( ( ( M  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) )
7978oveq2d 6286 . . . . . . 7  |-  ( m  =  M  ->  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
8075, 79eqeq12d 2476 . . . . . 6  |-  ( m  =  M  ->  (
( ( m  /L N )  x.  ( N  /L
m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) )  <->  ( ( M  /L N )  x.  ( N  /L M ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) )
8172, 80imbi12d 318 . . . . 5  |-  ( m  =  M  ->  (
( ( m  gcd  ( 2  x.  N
) )  =  1  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )  <-> 
( ( M  gcd  ( 2  x.  N
) )  =  1  ->  ( ( M  /L N )  x.  ( N  /L M ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) )
8281imbi2d 314 . . . 4  |-  ( m  =  M  ->  (
( ph  ->  ( ( m  gcd  ( 2  x.  N ) )  =  1  ->  (
( m  /L
N )  x.  ( N  /L m ) )  =  ( -u
1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )  <->  ( ph  ->  ( ( M  gcd  ( 2  x.  N
) )  =  1  ->  ( ( M  /L N )  x.  ( N  /L M ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) ) )
83 1t1e1 10679 . . . . . . 7  |-  ( 1  x.  1 )  =  1
84 neg1cn 10635 . . . . . . . 8  |-  -u 1  e.  CC
85 exp0 12155 . . . . . . . 8  |-  ( -u
1  e.  CC  ->  (
-u 1 ^ 0 )  =  1 )
8684, 85ax-mp 5 . . . . . . 7  |-  ( -u
1 ^ 0 )  =  1
8783, 86eqtr4i 2486 . . . . . 6  |-  ( 1  x.  1 )  =  ( -u 1 ^ 0 )
88 sq1 12247 . . . . . . . . 9  |-  ( 1 ^ 2 )  =  1
8988oveq1i 6280 . . . . . . . 8  |-  ( ( 1 ^ 2 )  /L N )  =  ( 1  /L N )
90 1nn 10542 . . . . . . . . . 10  |-  1  e.  NN
9190a1i 11 . . . . . . . . 9  |-  ( ph  ->  1  e.  NN )
924nnzd 10964 . . . . . . . . 9  |-  ( ph  ->  N  e.  ZZ )
93 1gcd 14262 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
1  gcd  N )  =  1 )
9492, 93syl 16 . . . . . . . . 9  |-  ( ph  ->  ( 1  gcd  N
)  =  1 )
95 lgssq 23811 . . . . . . . . 9  |-  ( ( 1  e.  NN  /\  N  e.  ZZ  /\  (
1  gcd  N )  =  1 )  -> 
( ( 1 ^ 2 )  /L
N )  =  1 )
9691, 92, 94, 95syl3anc 1226 . . . . . . . 8  |-  ( ph  ->  ( ( 1 ^ 2 )  /L
N )  =  1 )
9789, 96syl5eqr 2509 . . . . . . 7  |-  ( ph  ->  ( 1  /L
N )  =  1 )
9888oveq2i 6281 . . . . . . . 8  |-  ( N  /L ( 1 ^ 2 ) )  =  ( N  /L 1 )
99 gcd1 14257 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  ( N  gcd  1 )  =  1 )
10092, 99syl 16 . . . . . . . . 9  |-  ( ph  ->  ( N  gcd  1
)  =  1 )
101 lgssq2 23812 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  1  e.  NN  /\  ( N  gcd  1 )  =  1 )  ->  ( N  /L ( 1 ^ 2 ) )  =  1 )
10292, 91, 100, 101syl3anc 1226 . . . . . . . 8  |-  ( ph  ->  ( N  /L
( 1 ^ 2 ) )  =  1 )
10398, 102syl5eqr 2509 . . . . . . 7  |-  ( ph  ->  ( N  /L 1 )  =  1 )
10497, 103oveq12d 6288 . . . . . 6  |-  ( ph  ->  ( ( 1  /L N )  x.  ( N  /L 1 ) )  =  ( 1  x.  1 ) )
105 nnm1nn0 10833 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
1064, 105syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( N  -  1 )  e.  NN0 )
107106nn0cnd 10850 . . . . . . . . 9  |-  ( ph  ->  ( N  -  1 )  e.  CC )
108107halfcld 10779 . . . . . . . 8  |-  ( ph  ->  ( ( N  - 
1 )  /  2
)  e.  CC )
109108mul02d 9767 . . . . . . 7  |-  ( ph  ->  ( 0  x.  (
( N  -  1 )  /  2 ) )  =  0 )
110109oveq2d 6286 . . . . . 6  |-  ( ph  ->  ( -u 1 ^ ( 0  x.  (
( N  -  1 )  /  2 ) ) )  =  (
-u 1 ^ 0 ) )
11187, 104, 1103eqtr4a 2521 . . . . 5  |-  ( ph  ->  ( ( 1  /L N )  x.  ( N  /L 1 ) )  =  ( -u 1 ^ ( 0  x.  (
( N  -  1 )  /  2 ) ) ) )
112111a1d 25 . . . 4  |-  ( ph  ->  ( ( m  gcd  ( 2  x.  N
) )  =  1  ->  ( ( 1  /L N )  x.  ( N  /L 1 ) )  =  ( -u 1 ^ ( 0  x.  ( ( N  - 
1 )  /  2
) ) ) ) )
113 simprl 754 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  m  e.  Prime )
114 prmz 14308 . . . . . . . . . . . 12  |-  ( m  e.  Prime  ->  m  e.  ZZ )
115114ad2antrl 725 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  m  e.  ZZ )
1166a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  2  e.  ZZ )
1174adantr 463 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  N  e.  NN )
118117nnzd 10964 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  N  e.  ZZ )
119 zmulcl 10908 . . . . . . . . . . . 12  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  ( 2  x.  N
)  e.  ZZ )
1206, 118, 119sylancr 661 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  (
2  x.  N )  e.  ZZ )
121 simprr 755 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  (
m  gcd  ( 2  x.  N ) )  =  1 )
122 dvdsmul1 14092 . . . . . . . . . . . 12  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  2  ||  ( 2  x.  N ) )
1236, 118, 122sylancr 661 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  2  ||  ( 2  x.  N
) )
124 rpdvds 14352 . . . . . . . . . . 11  |-  ( ( ( m  e.  ZZ  /\  2  e.  ZZ  /\  ( 2  x.  N
)  e.  ZZ )  /\  ( ( m  gcd  ( 2  x.  N ) )  =  1  /\  2  ||  ( 2  x.  N
) ) )  -> 
( m  gcd  2
)  =  1 )
125115, 116, 120, 121, 123, 124syl32anc 1234 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  (
m  gcd  2 )  =  1 )
126 prmrp 14329 . . . . . . . . . . 11  |-  ( ( m  e.  Prime  /\  2  e.  Prime )  ->  (
( m  gcd  2
)  =  1  <->  m  =/=  2 ) )
127113, 10, 126sylancl 660 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  (
( m  gcd  2
)  =  1  <->  m  =/=  2 ) )
128125, 127mpbid 210 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  m  =/=  2 )
129 eldifsn 4141 . . . . . . . . 9  |-  ( m  e.  ( Prime  \  {
2 } )  <->  ( m  e.  Prime  /\  m  =/=  2 ) )
130113, 128, 129sylanbrc 662 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  m  e.  ( Prime  \  { 2 } ) )
131 prmnn 14307 . . . . . . . . . . 11  |-  ( m  e.  Prime  ->  m  e.  NN )
132131ad2antrl 725 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  m  e.  NN )
1332a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  2  e.  NN )
134 rpmulgcd 14280 . . . . . . . . . 10  |-  ( ( ( m  e.  NN  /\  2  e.  NN  /\  N  e.  NN )  /\  ( m  gcd  2
)  =  1 )  ->  ( m  gcd  ( 2  x.  N
) )  =  ( m  gcd  N ) )
135132, 133, 117, 125, 134syl31anc 1229 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  (
m  gcd  ( 2  x.  N ) )  =  ( m  gcd  N ) )
136135, 121eqtr3d 2497 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  (
m  gcd  N )  =  1 )
137130, 136jca 530 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  (
m  e.  ( Prime  \  { 2 } )  /\  ( m  gcd  N )  =  1 ) )
138 lgsquad2lem2.f . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
139137, 138syldan 468 . . . . . 6  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  (
( m  /L
N )  x.  ( N  /L m ) )  =  ( -u
1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )
140139exp32 603 . . . . 5  |-  ( ph  ->  ( m  e.  Prime  -> 
( ( m  gcd  ( 2  x.  N
) )  =  1  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) )
141140com12 31 . . . 4  |-  ( m  e.  Prime  ->  ( ph  ->  ( ( m  gcd  ( 2  x.  N
) )  =  1  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) )
142 jcab 861 . . . . 5  |-  ( (
ph  ->  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  (
( x  /L
N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) )  <->  ( ( ph  ->  ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )  /\  ( ph  ->  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  ( (
y  /L N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )
143 simplrl 759 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  x  e.  (
ZZ>= `  2 ) )
144 eluz2nn 11120 . . . . . . . . . . . 12  |-  ( x  e.  ( ZZ>= `  2
)  ->  x  e.  NN )
145143, 144syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  x  e.  NN )
146 simplrr 760 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  y  e.  (
ZZ>= `  2 ) )
147 eluz2nn 11120 . . . . . . . . . . . 12  |-  ( y  e.  ( ZZ>= `  2
)  ->  y  e.  NN )
148146, 147syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  y  e.  NN )
149145, 148nnmulcld 10579 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  ( x  x.  y )  e.  NN )
150 n2dvds1 14122 . . . . . . . . . . . 12  |-  -.  2  ||  1
15192ad2antrr 723 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  ->  N  e.  ZZ )
1526, 151, 122sylancr 661 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
2  ||  ( 2  x.  N ) )
1536a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
2  e.  ZZ )
154 eluzelz 11091 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( ZZ>= `  2
)  ->  x  e.  ZZ )
155 eluzelz 11091 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( ZZ>= `  2
)  ->  y  e.  ZZ )
156154, 155anim12i 564 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
)  ->  ( x  e.  ZZ  /\  y  e.  ZZ ) )
157156ad2antlr 724 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( x  e.  ZZ  /\  y  e.  ZZ ) )
158 zmulcl 10908 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  x.  y
)  e.  ZZ )
159157, 158syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( x  x.  y
)  e.  ZZ )
1606, 151, 119sylancr 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( 2  x.  N
)  e.  ZZ )
161 dvdsgcd 14268 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  ZZ  /\  ( x  x.  y
)  e.  ZZ  /\  ( 2  x.  N
)  e.  ZZ )  ->  ( ( 2 
||  ( x  x.  y )  /\  2  ||  ( 2  x.  N
) )  ->  2  ||  ( ( x  x.  y )  gcd  (
2  x.  N ) ) ) )
162153, 159, 160, 161syl3anc 1226 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( ( 2  ||  ( x  x.  y
)  /\  2  ||  ( 2  x.  N
) )  ->  2  ||  ( ( x  x.  y )  gcd  (
2  x.  N ) ) ) )
163152, 162mpan2d 672 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( 2  ||  (
x  x.  y )  ->  2  ||  (
( x  x.  y
)  gcd  ( 2  x.  N ) ) ) )
164 simpr 459 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1 )
165164breq2d 4451 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( 2  ||  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  <->  2  ||  1 ) )
166163, 165sylibd 214 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( 2  ||  (
x  x.  y )  ->  2  ||  1
) )
167150, 166mtoi 178 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  ->  -.  2  ||  ( x  x.  y ) )
168167adantrr 714 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  -.  2  ||  ( x  x.  y
) )
1694ad2antrr 723 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  N  e.  NN )
170 lgsquad2.4 . . . . . . . . . . 11  |-  ( ph  ->  -.  2  ||  N
)
171170ad2antrr 723 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  -.  2  ||  N )
172 dvdsmul2 14093 . . . . . . . . . . . . 13  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  N  ||  ( 2  x.  N ) )
1736, 151, 172sylancr 661 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  ->  N  ||  ( 2  x.  N ) )
174 rpdvds 14352 . . . . . . . . . . . 12  |-  ( ( ( ( x  x.  y )  e.  ZZ  /\  N  e.  ZZ  /\  ( 2  x.  N
)  e.  ZZ )  /\  ( ( ( x  x.  y )  gcd  ( 2  x.  N ) )  =  1  /\  N  ||  ( 2  x.  N
) ) )  -> 
( ( x  x.  y )  gcd  N
)  =  1 )
175159, 151, 160, 164, 173, 174syl32anc 1234 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( ( x  x.  y )  gcd  N
)  =  1 )
176175adantrr 714 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  ( ( x  x.  y )  gcd 
N )  =  1 )
177 eqidd 2455 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  ( x  x.  y )  =  ( x  x.  y ) )
178157simpld 457 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  ->  x  e.  ZZ )
179 gcdcom 14245 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ZZ  /\  ( 2  x.  N
)  e.  ZZ )  ->  ( x  gcd  ( 2  x.  N
) )  =  ( ( 2  x.  N
)  gcd  x )
)
180178, 160, 179syl2anc 659 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( x  gcd  (
2  x.  N ) )  =  ( ( 2  x.  N )  gcd  x ) )
181 gcdcom 14245 . . . . . . . . . . . . . . . 16  |-  ( ( ( 2  x.  N
)  e.  ZZ  /\  ( x  x.  y
)  e.  ZZ )  ->  ( ( 2  x.  N )  gcd  ( x  x.  y
) )  =  ( ( x  x.  y
)  gcd  ( 2  x.  N ) ) )
182160, 159, 181syl2anc 659 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( ( 2  x.  N )  gcd  (
x  x.  y ) )  =  ( ( x  x.  y )  gcd  ( 2  x.  N ) ) )
183182, 164eqtrd 2495 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( ( 2  x.  N )  gcd  (
x  x.  y ) )  =  1 )
184 dvdsmul1 14092 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  x  ||  ( x  x.  y ) )
185157, 184syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  ->  x  ||  ( x  x.  y ) )
186 rpdvds 14352 . . . . . . . . . . . . . 14  |-  ( ( ( ( 2  x.  N )  e.  ZZ  /\  x  e.  ZZ  /\  ( x  x.  y
)  e.  ZZ )  /\  ( ( ( 2  x.  N )  gcd  ( x  x.  y ) )  =  1  /\  x  ||  ( x  x.  y
) ) )  -> 
( ( 2  x.  N )  gcd  x
)  =  1 )
187160, 178, 159, 183, 185, 186syl32anc 1234 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( ( 2  x.  N )  gcd  x
)  =  1 )
188180, 187eqtrd 2495 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( x  gcd  (
2  x.  N ) )  =  1 )
189188adantrr 714 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  ( x  gcd  ( 2  x.  N
) )  =  1 )
190 simprrl 763 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
191189, 190mpd 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  ( ( x  /L N )  x.  ( N  /L x ) )  =  ( -u 1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
192157simprd 461 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
y  e.  ZZ )
193 gcdcom 14245 . . . . . . . . . . . . . 14  |-  ( ( y  e.  ZZ  /\  ( 2  x.  N
)  e.  ZZ )  ->  ( y  gcd  ( 2  x.  N
) )  =  ( ( 2  x.  N
)  gcd  y )
)
194192, 160, 193syl2anc 659 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( y  gcd  (
2  x.  N ) )  =  ( ( 2  x.  N )  gcd  y ) )
195 dvdsmul2 14093 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  y  ||  ( x  x.  y ) )
196157, 195syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
y  ||  ( x  x.  y ) )
197 rpdvds 14352 . . . . . . . . . . . . . 14  |-  ( ( ( ( 2  x.  N )  e.  ZZ  /\  y  e.  ZZ  /\  ( x  x.  y
)  e.  ZZ )  /\  ( ( ( 2  x.  N )  gcd  ( x  x.  y ) )  =  1  /\  y  ||  ( x  x.  y
) ) )  -> 
( ( 2  x.  N )  gcd  y
)  =  1 )
198160, 192, 159, 183, 196, 197syl32anc 1234 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( ( 2  x.  N )  gcd  y
)  =  1 )
199194, 198eqtrd 2495 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( y  gcd  (
2  x.  N ) )  =  1 )
200199adantrr 714 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  ( y  gcd  ( 2  x.  N
) )  =  1 )
201 simprrr 764 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  ( (
y  /L N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
202200, 201mpd 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  ( ( y  /L N )  x.  ( N  /L y ) )  =  ( -u 1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
203149, 168, 169, 171, 176, 145, 148, 177, 191, 202lgsquad2lem1 23834 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  ( ( ( x  x.  y )  /L N )  x.  ( N  /L ( x  x.  y ) ) )  =  ( -u 1 ^ ( ( ( ( x  x.  y
)  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
204203exp32 603 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  2 )  /\  y  e.  ( ZZ>=
`  2 ) ) )  ->  ( (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1  ->  (
( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )  ->  (
( ( x  x.  y )  /L
N )  x.  ( N  /L ( x  x.  y ) ) )  =  ( -u
1 ^ ( ( ( ( x  x.  y )  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) )
205204com23 78 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  2 )  /\  y  e.  ( ZZ>=
`  2 ) ) )  ->  ( (
( ( x  gcd  ( 2  x.  N
) )  =  1  ->  ( ( x  /L N )  x.  ( N  /L x ) )  =  ( -u 1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  ( (
y  /L N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )  ->  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  -> 
( ( ( x  x.  y )  /L N )  x.  ( N  /L
( x  x.  y
) ) )  =  ( -u 1 ^ ( ( ( ( x  x.  y )  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) ) ) )
206205expcom 433 . . . . . 6  |-  ( ( x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
)  ->  ( ph  ->  ( ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  (
( x  /L
N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )  ->  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  -> 
( ( ( x  x.  y )  /L N )  x.  ( N  /L
( x  x.  y
) ) )  =  ( -u 1 ^ ( ( ( ( x  x.  y )  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) ) ) ) )
207206a2d 26 . . . . 5  |-  ( ( x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
)  ->  ( ( ph  ->  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  (
( x  /L
N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) )  -> 
( ph  ->  ( ( ( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1  ->  (
( ( x  x.  y )  /L
N )  x.  ( N  /L ( x  x.  y ) ) )  =  ( -u
1 ^ ( ( ( ( x  x.  y )  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )
208142, 207syl5bir 218 . . . 4  |-  ( ( x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
)  ->  ( (
( ph  ->  ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  (
( x  /L
N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )  /\  ( ph  ->  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  ( (
y  /L N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) )  -> 
( ph  ->  ( ( ( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1  ->  (
( ( x  x.  y )  /L
N )  x.  ( N  /L ( x  x.  y ) ) )  =  ( -u
1 ^ ( ( ( ( x  x.  y )  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )
20934, 46, 58, 70, 82, 112, 141, 208prmind 14316 . . 3  |-  ( M  e.  NN  ->  ( ph  ->  ( ( M  gcd  ( 2  x.  N ) )  =  1  ->  ( ( M  /L N )  x.  ( N  /L M ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) )
2101, 209mpcom 36 . 2  |-  ( ph  ->  ( ( M  gcd  ( 2  x.  N
) )  =  1  ->  ( ( M  /L N )  x.  ( N  /L M ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) )
21118, 210mpd 15 1  |-  ( ph  ->  ( ( M  /L N )  x.  ( N  /L
M ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823    =/= wne 2649   A.wral 2804    \ cdif 3458   {csn 4016   class class class wbr 4439   ` cfv 5570  (class class class)co 6270   CCcc 9479   0cc0 9481   1c1 9482    x. cmul 9486    - cmin 9796   -ucneg 9797    / cdiv 10202   NNcn 10531   2c2 10581   NN0cn0 10791   ZZcz 10860   ZZ>=cuz 11082   ...cfz 11675   ^cexp 12151    || cdvds 14073    gcd cgcd 14231   Primecprime 14304    /Lclgs 23770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-sup 7893  df-card 8311  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-n0 10792  df-z 10861  df-uz 11083  df-q 11184  df-rp 11222  df-fz 11676  df-fzo 11800  df-fl 11910  df-mod 11979  df-seq 12093  df-exp 12152  df-hash 12391  df-cj 13017  df-re 13018  df-im 13019  df-sqrt 13153  df-abs 13154  df-dvds 14074  df-gcd 14232  df-prm 14305  df-phi 14383  df-pc 14448  df-lgs 23771
This theorem is referenced by:  lgsquad2  23836
  Copyright terms: Public domain W3C validator