MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsquad2lem2 Structured version   Unicode version

Theorem lgsquad2lem2 22657
Description: Lemma for lgsquad2 22658. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
lgsquad2.1  |-  ( ph  ->  M  e.  NN )
lgsquad2.2  |-  ( ph  ->  -.  2  ||  M
)
lgsquad2.3  |-  ( ph  ->  N  e.  NN )
lgsquad2.4  |-  ( ph  ->  -.  2  ||  N
)
lgsquad2.5  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
lgsquad2lem2.f  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
lgsquad2lem2.s  |-  ( ps  <->  A. x  e.  ( 1 ... k ) ( ( x  gcd  (
2  x.  N ) )  =  1  -> 
( ( x  /L N )  x.  ( N  /L
x ) )  =  ( -u 1 ^ ( ( ( x  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) ) )
Assertion
Ref Expression
lgsquad2lem2  |-  ( ph  ->  ( ( M  /L N )  x.  ( N  /L
M ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) )
Distinct variable groups:    m, M    x, m, N    ph, m, x
Allowed substitution hints:    ph( k)    ps( x, k, m)    M( x, k)    N( k)

Proof of Theorem lgsquad2lem2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 lgsquad2.1 . . . 4  |-  ( ph  ->  M  e.  NN )
2 2nn 10475 . . . . 5  |-  2  e.  NN
32a1i 11 . . . 4  |-  ( ph  ->  2  e.  NN )
4 lgsquad2.3 . . . 4  |-  ( ph  ->  N  e.  NN )
51nnzd 10742 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
6 2z 10674 . . . . . 6  |-  2  e.  ZZ
7 gcdcom 13700 . . . . . 6  |-  ( ( M  e.  ZZ  /\  2  e.  ZZ )  ->  ( M  gcd  2
)  =  ( 2  gcd  M ) )
85, 6, 7sylancl 657 . . . . 5  |-  ( ph  ->  ( M  gcd  2
)  =  ( 2  gcd  M ) )
9 lgsquad2.2 . . . . . 6  |-  ( ph  ->  -.  2  ||  M
)
10 2prm 13775 . . . . . . 7  |-  2  e.  Prime
11 coprm 13782 . . . . . . 7  |-  ( ( 2  e.  Prime  /\  M  e.  ZZ )  ->  ( -.  2  ||  M  <->  ( 2  gcd  M )  =  1 ) )
1210, 5, 11sylancr 658 . . . . . 6  |-  ( ph  ->  ( -.  2  ||  M 
<->  ( 2  gcd  M
)  =  1 ) )
139, 12mpbid 210 . . . . 5  |-  ( ph  ->  ( 2  gcd  M
)  =  1 )
148, 13eqtrd 2473 . . . 4  |-  ( ph  ->  ( M  gcd  2
)  =  1 )
15 rpmulgcd 13735 . . . 4  |-  ( ( ( M  e.  NN  /\  2  e.  NN  /\  N  e.  NN )  /\  ( M  gcd  2
)  =  1 )  ->  ( M  gcd  ( 2  x.  N
) )  =  ( M  gcd  N ) )
161, 3, 4, 14, 15syl31anc 1216 . . 3  |-  ( ph  ->  ( M  gcd  (
2  x.  N ) )  =  ( M  gcd  N ) )
17 lgsquad2.5 . . 3  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
1816, 17eqtrd 2473 . 2  |-  ( ph  ->  ( M  gcd  (
2  x.  N ) )  =  1 )
19 oveq1 6097 . . . . . . . 8  |-  ( m  =  1  ->  (
m  /L N )  =  ( 1  /L N ) )
20 oveq2 6098 . . . . . . . 8  |-  ( m  =  1  ->  ( N  /L m )  =  ( N  /L 1 ) )
2119, 20oveq12d 6108 . . . . . . 7  |-  ( m  =  1  ->  (
( m  /L
N )  x.  ( N  /L m ) )  =  ( ( 1  /L N )  x.  ( N  /L 1 ) ) )
22 oveq1 6097 . . . . . . . . . . . 12  |-  ( m  =  1  ->  (
m  -  1 )  =  ( 1  -  1 ) )
23 1m1e0 10386 . . . . . . . . . . . 12  |-  ( 1  -  1 )  =  0
2422, 23syl6eq 2489 . . . . . . . . . . 11  |-  ( m  =  1  ->  (
m  -  1 )  =  0 )
2524oveq1d 6105 . . . . . . . . . 10  |-  ( m  =  1  ->  (
( m  -  1 )  /  2 )  =  ( 0  / 
2 ) )
26 2cn 10388 . . . . . . . . . . 11  |-  2  e.  CC
27 2ne0 10410 . . . . . . . . . . 11  |-  2  =/=  0
2826, 27div0i 10061 . . . . . . . . . 10  |-  ( 0  /  2 )  =  0
2925, 28syl6eq 2489 . . . . . . . . 9  |-  ( m  =  1  ->  (
( m  -  1 )  /  2 )  =  0 )
3029oveq1d 6105 . . . . . . . 8  |-  ( m  =  1  ->  (
( ( m  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) )  =  ( 0  x.  ( ( N  - 
1 )  /  2
) ) )
3130oveq2d 6106 . . . . . . 7  |-  ( m  =  1  ->  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) )  =  ( -u 1 ^ ( 0  x.  ( ( N  - 
1 )  /  2
) ) ) )
3221, 31eqeq12d 2455 . . . . . 6  |-  ( m  =  1  ->  (
( ( m  /L N )  x.  ( N  /L
m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) )  <->  ( (
1  /L N )  x.  ( N  /L 1 ) )  =  ( -u
1 ^ ( 0  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
3332imbi2d 316 . . . . 5  |-  ( m  =  1  ->  (
( ( m  gcd  ( 2  x.  N
) )  =  1  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )  <-> 
( ( m  gcd  ( 2  x.  N
) )  =  1  ->  ( ( 1  /L N )  x.  ( N  /L 1 ) )  =  ( -u 1 ^ ( 0  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) )
3433imbi2d 316 . . . 4  |-  ( m  =  1  ->  (
( ph  ->  ( ( m  gcd  ( 2  x.  N ) )  =  1  ->  (
( m  /L
N )  x.  ( N  /L m ) )  =  ( -u
1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )  <->  ( ph  ->  ( ( m  gcd  ( 2  x.  N
) )  =  1  ->  ( ( 1  /L N )  x.  ( N  /L 1 ) )  =  ( -u 1 ^ ( 0  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) ) )
35 oveq1 6097 . . . . . . 7  |-  ( m  =  x  ->  (
m  gcd  ( 2  x.  N ) )  =  ( x  gcd  ( 2  x.  N
) ) )
3635eqeq1d 2449 . . . . . 6  |-  ( m  =  x  ->  (
( m  gcd  (
2  x.  N ) )  =  1  <->  (
x  gcd  ( 2  x.  N ) )  =  1 ) )
37 oveq1 6097 . . . . . . . 8  |-  ( m  =  x  ->  (
m  /L N )  =  ( x  /L N ) )
38 oveq2 6098 . . . . . . . 8  |-  ( m  =  x  ->  ( N  /L m )  =  ( N  /L x ) )
3937, 38oveq12d 6108 . . . . . . 7  |-  ( m  =  x  ->  (
( m  /L
N )  x.  ( N  /L m ) )  =  ( ( x  /L N )  x.  ( N  /L x ) ) )
40 oveq1 6097 . . . . . . . . . 10  |-  ( m  =  x  ->  (
m  -  1 )  =  ( x  - 
1 ) )
4140oveq1d 6105 . . . . . . . . 9  |-  ( m  =  x  ->  (
( m  -  1 )  /  2 )  =  ( ( x  -  1 )  / 
2 ) )
4241oveq1d 6105 . . . . . . . 8  |-  ( m  =  x  ->  (
( ( m  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) )  =  ( ( ( x  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) )
4342oveq2d 6106 . . . . . . 7  |-  ( m  =  x  ->  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) )  =  ( -u 1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
4439, 43eqeq12d 2455 . . . . . 6  |-  ( m  =  x  ->  (
( ( m  /L N )  x.  ( N  /L
m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) )  <->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
4536, 44imbi12d 320 . . . . 5  |-  ( m  =  x  ->  (
( ( m  gcd  ( 2  x.  N
) )  =  1  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )  <-> 
( ( x  gcd  ( 2  x.  N
) )  =  1  ->  ( ( x  /L N )  x.  ( N  /L x ) )  =  ( -u 1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) )
4645imbi2d 316 . . . 4  |-  ( m  =  x  ->  (
( ph  ->  ( ( m  gcd  ( 2  x.  N ) )  =  1  ->  (
( m  /L
N )  x.  ( N  /L m ) )  =  ( -u
1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )  <->  ( ph  ->  ( ( x  gcd  ( 2  x.  N
) )  =  1  ->  ( ( x  /L N )  x.  ( N  /L x ) )  =  ( -u 1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) ) )
47 oveq1 6097 . . . . . . 7  |-  ( m  =  y  ->  (
m  gcd  ( 2  x.  N ) )  =  ( y  gcd  ( 2  x.  N
) ) )
4847eqeq1d 2449 . . . . . 6  |-  ( m  =  y  ->  (
( m  gcd  (
2  x.  N ) )  =  1  <->  (
y  gcd  ( 2  x.  N ) )  =  1 ) )
49 oveq1 6097 . . . . . . . 8  |-  ( m  =  y  ->  (
m  /L N )  =  ( y  /L N ) )
50 oveq2 6098 . . . . . . . 8  |-  ( m  =  y  ->  ( N  /L m )  =  ( N  /L y ) )
5149, 50oveq12d 6108 . . . . . . 7  |-  ( m  =  y  ->  (
( m  /L
N )  x.  ( N  /L m ) )  =  ( ( y  /L N )  x.  ( N  /L y ) ) )
52 oveq1 6097 . . . . . . . . . 10  |-  ( m  =  y  ->  (
m  -  1 )  =  ( y  - 
1 ) )
5352oveq1d 6105 . . . . . . . . 9  |-  ( m  =  y  ->  (
( m  -  1 )  /  2 )  =  ( ( y  -  1 )  / 
2 ) )
5453oveq1d 6105 . . . . . . . 8  |-  ( m  =  y  ->  (
( ( m  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) )  =  ( ( ( y  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) )
5554oveq2d 6106 . . . . . . 7  |-  ( m  =  y  ->  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) )  =  ( -u 1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
5651, 55eqeq12d 2455 . . . . . 6  |-  ( m  =  y  ->  (
( ( m  /L N )  x.  ( N  /L
m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) )  <->  ( (
y  /L N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
5748, 56imbi12d 320 . . . . 5  |-  ( m  =  y  ->  (
( ( m  gcd  ( 2  x.  N
) )  =  1  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )  <-> 
( ( y  gcd  ( 2  x.  N
) )  =  1  ->  ( ( y  /L N )  x.  ( N  /L y ) )  =  ( -u 1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) )
5857imbi2d 316 . . . 4  |-  ( m  =  y  ->  (
( ph  ->  ( ( m  gcd  ( 2  x.  N ) )  =  1  ->  (
( m  /L
N )  x.  ( N  /L m ) )  =  ( -u
1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )  <->  ( ph  ->  ( ( y  gcd  ( 2  x.  N
) )  =  1  ->  ( ( y  /L N )  x.  ( N  /L y ) )  =  ( -u 1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) ) )
59 oveq1 6097 . . . . . . 7  |-  ( m  =  ( x  x.  y )  ->  (
m  gcd  ( 2  x.  N ) )  =  ( ( x  x.  y )  gcd  ( 2  x.  N
) ) )
6059eqeq1d 2449 . . . . . 6  |-  ( m  =  ( x  x.  y )  ->  (
( m  gcd  (
2  x.  N ) )  =  1  <->  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 ) )
61 oveq1 6097 . . . . . . . 8  |-  ( m  =  ( x  x.  y )  ->  (
m  /L N )  =  ( ( x  x.  y )  /L N ) )
62 oveq2 6098 . . . . . . . 8  |-  ( m  =  ( x  x.  y )  ->  ( N  /L m )  =  ( N  /L ( x  x.  y ) ) )
6361, 62oveq12d 6108 . . . . . . 7  |-  ( m  =  ( x  x.  y )  ->  (
( m  /L
N )  x.  ( N  /L m ) )  =  ( ( ( x  x.  y
)  /L N )  x.  ( N  /L ( x  x.  y ) ) ) )
64 oveq1 6097 . . . . . . . . . 10  |-  ( m  =  ( x  x.  y )  ->  (
m  -  1 )  =  ( ( x  x.  y )  - 
1 ) )
6564oveq1d 6105 . . . . . . . . 9  |-  ( m  =  ( x  x.  y )  ->  (
( m  -  1 )  /  2 )  =  ( ( ( x  x.  y )  -  1 )  / 
2 ) )
6665oveq1d 6105 . . . . . . . 8  |-  ( m  =  ( x  x.  y )  ->  (
( ( m  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) )  =  ( ( ( ( x  x.  y
)  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) )
6766oveq2d 6106 . . . . . . 7  |-  ( m  =  ( x  x.  y )  ->  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) )  =  ( -u 1 ^ ( ( ( ( x  x.  y
)  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
6863, 67eqeq12d 2455 . . . . . 6  |-  ( m  =  ( x  x.  y )  ->  (
( ( m  /L N )  x.  ( N  /L
m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) )  <->  ( (
( x  x.  y
)  /L N )  x.  ( N  /L ( x  x.  y ) ) )  =  ( -u
1 ^ ( ( ( ( x  x.  y )  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
6960, 68imbi12d 320 . . . . 5  |-  ( m  =  ( x  x.  y )  ->  (
( ( m  gcd  ( 2  x.  N
) )  =  1  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )  <-> 
( ( ( x  x.  y )  gcd  ( 2  x.  N
) )  =  1  ->  ( ( ( x  x.  y )  /L N )  x.  ( N  /L ( x  x.  y ) ) )  =  ( -u 1 ^ ( ( ( ( x  x.  y
)  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) )
7069imbi2d 316 . . . 4  |-  ( m  =  ( x  x.  y )  ->  (
( ph  ->  ( ( m  gcd  ( 2  x.  N ) )  =  1  ->  (
( m  /L
N )  x.  ( N  /L m ) )  =  ( -u
1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )  <->  ( ph  ->  ( ( ( x  x.  y )  gcd  ( 2  x.  N
) )  =  1  ->  ( ( ( x  x.  y )  /L N )  x.  ( N  /L ( x  x.  y ) ) )  =  ( -u 1 ^ ( ( ( ( x  x.  y
)  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) ) )
71 oveq1 6097 . . . . . . 7  |-  ( m  =  M  ->  (
m  gcd  ( 2  x.  N ) )  =  ( M  gcd  ( 2  x.  N
) ) )
7271eqeq1d 2449 . . . . . 6  |-  ( m  =  M  ->  (
( m  gcd  (
2  x.  N ) )  =  1  <->  ( M  gcd  ( 2  x.  N ) )  =  1 ) )
73 oveq1 6097 . . . . . . . 8  |-  ( m  =  M  ->  (
m  /L N )  =  ( M  /L N ) )
74 oveq2 6098 . . . . . . . 8  |-  ( m  =  M  ->  ( N  /L m )  =  ( N  /L M ) )
7573, 74oveq12d 6108 . . . . . . 7  |-  ( m  =  M  ->  (
( m  /L
N )  x.  ( N  /L m ) )  =  ( ( M  /L N )  x.  ( N  /L M ) ) )
76 oveq1 6097 . . . . . . . . . 10  |-  ( m  =  M  ->  (
m  -  1 )  =  ( M  - 
1 ) )
7776oveq1d 6105 . . . . . . . . 9  |-  ( m  =  M  ->  (
( m  -  1 )  /  2 )  =  ( ( M  -  1 )  / 
2 ) )
7877oveq1d 6105 . . . . . . . 8  |-  ( m  =  M  ->  (
( ( m  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) )  =  ( ( ( M  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) )
7978oveq2d 6106 . . . . . . 7  |-  ( m  =  M  ->  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
8075, 79eqeq12d 2455 . . . . . 6  |-  ( m  =  M  ->  (
( ( m  /L N )  x.  ( N  /L
m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) )  <->  ( ( M  /L N )  x.  ( N  /L M ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) )
8172, 80imbi12d 320 . . . . 5  |-  ( m  =  M  ->  (
( ( m  gcd  ( 2  x.  N
) )  =  1  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )  <-> 
( ( M  gcd  ( 2  x.  N
) )  =  1  ->  ( ( M  /L N )  x.  ( N  /L M ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) )
8281imbi2d 316 . . . 4  |-  ( m  =  M  ->  (
( ph  ->  ( ( m  gcd  ( 2  x.  N ) )  =  1  ->  (
( m  /L
N )  x.  ( N  /L m ) )  =  ( -u
1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )  <->  ( ph  ->  ( ( M  gcd  ( 2  x.  N
) )  =  1  ->  ( ( M  /L N )  x.  ( N  /L M ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) ) )
83 1t1e1 10465 . . . . . . 7  |-  ( 1  x.  1 )  =  1
84 neg1cn 10421 . . . . . . . 8  |-  -u 1  e.  CC
85 exp0 11865 . . . . . . . 8  |-  ( -u
1  e.  CC  ->  (
-u 1 ^ 0 )  =  1 )
8684, 85ax-mp 5 . . . . . . 7  |-  ( -u
1 ^ 0 )  =  1
8783, 86eqtr4i 2464 . . . . . 6  |-  ( 1  x.  1 )  =  ( -u 1 ^ 0 )
88 sq1 11956 . . . . . . . . 9  |-  ( 1 ^ 2 )  =  1
8988oveq1i 6100 . . . . . . . 8  |-  ( ( 1 ^ 2 )  /L N )  =  ( 1  /L N )
90 1nn 10329 . . . . . . . . . 10  |-  1  e.  NN
9190a1i 11 . . . . . . . . 9  |-  ( ph  ->  1  e.  NN )
924nnzd 10742 . . . . . . . . 9  |-  ( ph  ->  N  e.  ZZ )
93 1gcd 13717 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
1  gcd  N )  =  1 )
9492, 93syl 16 . . . . . . . . 9  |-  ( ph  ->  ( 1  gcd  N
)  =  1 )
95 lgssq 22633 . . . . . . . . 9  |-  ( ( 1  e.  NN  /\  N  e.  ZZ  /\  (
1  gcd  N )  =  1 )  -> 
( ( 1 ^ 2 )  /L
N )  =  1 )
9691, 92, 94, 95syl3anc 1213 . . . . . . . 8  |-  ( ph  ->  ( ( 1 ^ 2 )  /L
N )  =  1 )
9789, 96syl5eqr 2487 . . . . . . 7  |-  ( ph  ->  ( 1  /L
N )  =  1 )
9888oveq2i 6101 . . . . . . . 8  |-  ( N  /L ( 1 ^ 2 ) )  =  ( N  /L 1 )
99 gcd1 13712 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  ( N  gcd  1 )  =  1 )
10092, 99syl 16 . . . . . . . . 9  |-  ( ph  ->  ( N  gcd  1
)  =  1 )
101 lgssq2 22634 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  1  e.  NN  /\  ( N  gcd  1 )  =  1 )  ->  ( N  /L ( 1 ^ 2 ) )  =  1 )
10292, 91, 100, 101syl3anc 1213 . . . . . . . 8  |-  ( ph  ->  ( N  /L
( 1 ^ 2 ) )  =  1 )
10398, 102syl5eqr 2487 . . . . . . 7  |-  ( ph  ->  ( N  /L 1 )  =  1 )
10497, 103oveq12d 6108 . . . . . 6  |-  ( ph  ->  ( ( 1  /L N )  x.  ( N  /L 1 ) )  =  ( 1  x.  1 ) )
105 nnm1nn0 10617 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
1064, 105syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( N  -  1 )  e.  NN0 )
107106nn0cnd 10634 . . . . . . . . 9  |-  ( ph  ->  ( N  -  1 )  e.  CC )
108107halfcld 10565 . . . . . . . 8  |-  ( ph  ->  ( ( N  - 
1 )  /  2
)  e.  CC )
109108mul02d 9563 . . . . . . 7  |-  ( ph  ->  ( 0  x.  (
( N  -  1 )  /  2 ) )  =  0 )
110109oveq2d 6106 . . . . . 6  |-  ( ph  ->  ( -u 1 ^ ( 0  x.  (
( N  -  1 )  /  2 ) ) )  =  (
-u 1 ^ 0 ) )
11187, 104, 1103eqtr4a 2499 . . . . 5  |-  ( ph  ->  ( ( 1  /L N )  x.  ( N  /L 1 ) )  =  ( -u 1 ^ ( 0  x.  (
( N  -  1 )  /  2 ) ) ) )
112111a1d 25 . . . 4  |-  ( ph  ->  ( ( m  gcd  ( 2  x.  N
) )  =  1  ->  ( ( 1  /L N )  x.  ( N  /L 1 ) )  =  ( -u 1 ^ ( 0  x.  ( ( N  - 
1 )  /  2
) ) ) ) )
113 simprl 750 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  m  e.  Prime )
114 prmz 13763 . . . . . . . . . . . 12  |-  ( m  e.  Prime  ->  m  e.  ZZ )
115114ad2antrl 722 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  m  e.  ZZ )
1166a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  2  e.  ZZ )
1174adantr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  N  e.  NN )
118117nnzd 10742 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  N  e.  ZZ )
119 zmulcl 10689 . . . . . . . . . . . 12  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  ( 2  x.  N
)  e.  ZZ )
1206, 118, 119sylancr 658 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  (
2  x.  N )  e.  ZZ )
121 simprr 751 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  (
m  gcd  ( 2  x.  N ) )  =  1 )
122 dvdsmul1 13550 . . . . . . . . . . . 12  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  2  ||  ( 2  x.  N ) )
1236, 118, 122sylancr 658 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  2  ||  ( 2  x.  N
) )
124 rpdvds 13806 . . . . . . . . . . 11  |-  ( ( ( m  e.  ZZ  /\  2  e.  ZZ  /\  ( 2  x.  N
)  e.  ZZ )  /\  ( ( m  gcd  ( 2  x.  N ) )  =  1  /\  2  ||  ( 2  x.  N
) ) )  -> 
( m  gcd  2
)  =  1 )
125115, 116, 120, 121, 123, 124syl32anc 1221 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  (
m  gcd  2 )  =  1 )
126 prmrp 13783 . . . . . . . . . . 11  |-  ( ( m  e.  Prime  /\  2  e.  Prime )  ->  (
( m  gcd  2
)  =  1  <->  m  =/=  2 ) )
127113, 10, 126sylancl 657 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  (
( m  gcd  2
)  =  1  <->  m  =/=  2 ) )
128125, 127mpbid 210 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  m  =/=  2 )
129 eldifsn 3997 . . . . . . . . 9  |-  ( m  e.  ( Prime  \  {
2 } )  <->  ( m  e.  Prime  /\  m  =/=  2 ) )
130113, 128, 129sylanbrc 659 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  m  e.  ( Prime  \  { 2 } ) )
131 prmnn 13762 . . . . . . . . . . 11  |-  ( m  e.  Prime  ->  m  e.  NN )
132131ad2antrl 722 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  m  e.  NN )
1332a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  2  e.  NN )
134 rpmulgcd 13735 . . . . . . . . . 10  |-  ( ( ( m  e.  NN  /\  2  e.  NN  /\  N  e.  NN )  /\  ( m  gcd  2
)  =  1 )  ->  ( m  gcd  ( 2  x.  N
) )  =  ( m  gcd  N ) )
135132, 133, 117, 125, 134syl31anc 1216 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  (
m  gcd  ( 2  x.  N ) )  =  ( m  gcd  N ) )
136135, 121eqtr3d 2475 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  (
m  gcd  N )  =  1 )
137130, 136jca 529 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  (
m  e.  ( Prime  \  { 2 } )  /\  ( m  gcd  N )  =  1 ) )
138 lgsquad2lem2.f . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
139137, 138syldan 467 . . . . . 6  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  (
( m  /L
N )  x.  ( N  /L m ) )  =  ( -u
1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )
140139exp32 602 . . . . 5  |-  ( ph  ->  ( m  e.  Prime  -> 
( ( m  gcd  ( 2  x.  N
) )  =  1  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) )
141140com12 31 . . . 4  |-  ( m  e.  Prime  ->  ( ph  ->  ( ( m  gcd  ( 2  x.  N
) )  =  1  ->  ( ( m  /L N )  x.  ( N  /L m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) )
142 jcab 853 . . . . 5  |-  ( (
ph  ->  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  (
( x  /L
N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) )  <->  ( ( ph  ->  ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )  /\  ( ph  ->  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  ( (
y  /L N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )
143 simplrl 754 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  x  e.  (
ZZ>= `  2 ) )
144 eluz2b2 10923 . . . . . . . . . . . . 13  |-  ( x  e.  ( ZZ>= `  2
)  <->  ( x  e.  NN  /\  1  < 
x ) )
145144simplbi 457 . . . . . . . . . . . 12  |-  ( x  e.  ( ZZ>= `  2
)  ->  x  e.  NN )
146143, 145syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  x  e.  NN )
147 simplrr 755 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  y  e.  (
ZZ>= `  2 ) )
148 eluz2b2 10923 . . . . . . . . . . . . 13  |-  ( y  e.  ( ZZ>= `  2
)  <->  ( y  e.  NN  /\  1  < 
y ) )
149148simplbi 457 . . . . . . . . . . . 12  |-  ( y  e.  ( ZZ>= `  2
)  ->  y  e.  NN )
150147, 149syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  y  e.  NN )
151146, 150nnmulcld 10365 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  ( x  x.  y )  e.  NN )
152 n2dvds1 13578 . . . . . . . . . . . 12  |-  -.  2  ||  1
15392ad2antrr 720 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  ->  N  e.  ZZ )
1546, 153, 122sylancr 658 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
2  ||  ( 2  x.  N ) )
1556a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
2  e.  ZZ )
156 eluzelz 10866 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( ZZ>= `  2
)  ->  x  e.  ZZ )
157 eluzelz 10866 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( ZZ>= `  2
)  ->  y  e.  ZZ )
158156, 157anim12i 563 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
)  ->  ( x  e.  ZZ  /\  y  e.  ZZ ) )
159158ad2antlr 721 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( x  e.  ZZ  /\  y  e.  ZZ ) )
160 zmulcl 10689 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  x.  y
)  e.  ZZ )
161159, 160syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( x  x.  y
)  e.  ZZ )
1626, 153, 119sylancr 658 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( 2  x.  N
)  e.  ZZ )
163 dvdsgcd 13723 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  ZZ  /\  ( x  x.  y
)  e.  ZZ  /\  ( 2  x.  N
)  e.  ZZ )  ->  ( ( 2 
||  ( x  x.  y )  /\  2  ||  ( 2  x.  N
) )  ->  2  ||  ( ( x  x.  y )  gcd  (
2  x.  N ) ) ) )
164155, 161, 162, 163syl3anc 1213 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( ( 2  ||  ( x  x.  y
)  /\  2  ||  ( 2  x.  N
) )  ->  2  ||  ( ( x  x.  y )  gcd  (
2  x.  N ) ) ) )
165154, 164mpan2d 669 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( 2  ||  (
x  x.  y )  ->  2  ||  (
( x  x.  y
)  gcd  ( 2  x.  N ) ) ) )
166 simpr 458 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1 )
167166breq2d 4301 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( 2  ||  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  <->  2  ||  1 ) )
168165, 167sylibd 214 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( 2  ||  (
x  x.  y )  ->  2  ||  1
) )
169152, 168mtoi 178 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  ->  -.  2  ||  ( x  x.  y ) )
170169adantrr 711 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  -.  2  ||  ( x  x.  y
) )
1714ad2antrr 720 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  N  e.  NN )
172 lgsquad2.4 . . . . . . . . . . 11  |-  ( ph  ->  -.  2  ||  N
)
173172ad2antrr 720 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  -.  2  ||  N )
174 dvdsmul2 13551 . . . . . . . . . . . . 13  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  N  ||  ( 2  x.  N ) )
1756, 153, 174sylancr 658 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  ->  N  ||  ( 2  x.  N ) )
176 rpdvds 13806 . . . . . . . . . . . 12  |-  ( ( ( ( x  x.  y )  e.  ZZ  /\  N  e.  ZZ  /\  ( 2  x.  N
)  e.  ZZ )  /\  ( ( ( x  x.  y )  gcd  ( 2  x.  N ) )  =  1  /\  N  ||  ( 2  x.  N
) ) )  -> 
( ( x  x.  y )  gcd  N
)  =  1 )
177161, 153, 162, 166, 175, 176syl32anc 1221 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( ( x  x.  y )  gcd  N
)  =  1 )
178177adantrr 711 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  ( ( x  x.  y )  gcd 
N )  =  1 )
179 eqidd 2442 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  ( x  x.  y )  =  ( x  x.  y ) )
180159simpld 456 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  ->  x  e.  ZZ )
181 gcdcom 13700 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ZZ  /\  ( 2  x.  N
)  e.  ZZ )  ->  ( x  gcd  ( 2  x.  N
) )  =  ( ( 2  x.  N
)  gcd  x )
)
182180, 162, 181syl2anc 656 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( x  gcd  (
2  x.  N ) )  =  ( ( 2  x.  N )  gcd  x ) )
183 gcdcom 13700 . . . . . . . . . . . . . . . 16  |-  ( ( ( 2  x.  N
)  e.  ZZ  /\  ( x  x.  y
)  e.  ZZ )  ->  ( ( 2  x.  N )  gcd  ( x  x.  y
) )  =  ( ( x  x.  y
)  gcd  ( 2  x.  N ) ) )
184162, 161, 183syl2anc 656 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( ( 2  x.  N )  gcd  (
x  x.  y ) )  =  ( ( x  x.  y )  gcd  ( 2  x.  N ) ) )
185184, 166eqtrd 2473 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( ( 2  x.  N )  gcd  (
x  x.  y ) )  =  1 )
186 dvdsmul1 13550 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  x  ||  ( x  x.  y ) )
187159, 186syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  ->  x  ||  ( x  x.  y ) )
188 rpdvds 13806 . . . . . . . . . . . . . 14  |-  ( ( ( ( 2  x.  N )  e.  ZZ  /\  x  e.  ZZ  /\  ( x  x.  y
)  e.  ZZ )  /\  ( ( ( 2  x.  N )  gcd  ( x  x.  y ) )  =  1  /\  x  ||  ( x  x.  y
) ) )  -> 
( ( 2  x.  N )  gcd  x
)  =  1 )
189162, 180, 161, 185, 187, 188syl32anc 1221 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( ( 2  x.  N )  gcd  x
)  =  1 )
190182, 189eqtrd 2473 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( x  gcd  (
2  x.  N ) )  =  1 )
191190adantrr 711 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  ( x  gcd  ( 2  x.  N
) )  =  1 )
192 simprrl 758 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
193191, 192mpd 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  ( ( x  /L N )  x.  ( N  /L x ) )  =  ( -u 1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
194159simprd 460 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
y  e.  ZZ )
195 gcdcom 13700 . . . . . . . . . . . . . 14  |-  ( ( y  e.  ZZ  /\  ( 2  x.  N
)  e.  ZZ )  ->  ( y  gcd  ( 2  x.  N
) )  =  ( ( 2  x.  N
)  gcd  y )
)
196194, 162, 195syl2anc 656 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( y  gcd  (
2  x.  N ) )  =  ( ( 2  x.  N )  gcd  y ) )
197 dvdsmul2 13551 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  y  ||  ( x  x.  y ) )
198159, 197syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
y  ||  ( x  x.  y ) )
199 rpdvds 13806 . . . . . . . . . . . . . 14  |-  ( ( ( ( 2  x.  N )  e.  ZZ  /\  y  e.  ZZ  /\  ( x  x.  y
)  e.  ZZ )  /\  ( ( ( 2  x.  N )  gcd  ( x  x.  y ) )  =  1  /\  y  ||  ( x  x.  y
) ) )  -> 
( ( 2  x.  N )  gcd  y
)  =  1 )
200162, 194, 161, 185, 198, 199syl32anc 1221 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( ( 2  x.  N )  gcd  y
)  =  1 )
201196, 200eqtrd 2473 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( y  gcd  (
2  x.  N ) )  =  1 )
202201adantrr 711 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  ( y  gcd  ( 2  x.  N
) )  =  1 )
203 simprrr 759 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  ( (
y  /L N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
204202, 203mpd 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  ( ( y  /L N )  x.  ( N  /L y ) )  =  ( -u 1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
205151, 170, 171, 173, 178, 146, 150, 179, 193, 204lgsquad2lem1 22656 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  ( ( ( x  x.  y )  /L N )  x.  ( N  /L ( x  x.  y ) ) )  =  ( -u 1 ^ ( ( ( ( x  x.  y
)  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
206205exp32 602 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  2 )  /\  y  e.  ( ZZ>=
`  2 ) ) )  ->  ( (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1  ->  (
( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  /L N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )  ->  (
( ( x  x.  y )  /L
N )  x.  ( N  /L ( x  x.  y ) ) )  =  ( -u
1 ^ ( ( ( ( x  x.  y )  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) )
207206com23 78 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  2 )  /\  y  e.  ( ZZ>=
`  2 ) ) )  ->  ( (
( ( x  gcd  ( 2  x.  N
) )  =  1  ->  ( ( x  /L N )  x.  ( N  /L x ) )  =  ( -u 1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  ( (
y  /L N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )  ->  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  -> 
( ( ( x  x.  y )  /L N )  x.  ( N  /L
( x  x.  y
) ) )  =  ( -u 1 ^ ( ( ( ( x  x.  y )  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) ) ) )
208207expcom 435 . . . . . 6  |-  ( ( x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
)  ->  ( ph  ->  ( ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  (
( x  /L
N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )  ->  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  -> 
( ( ( x  x.  y )  /L N )  x.  ( N  /L
( x  x.  y
) ) )  =  ( -u 1 ^ ( ( ( ( x  x.  y )  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) ) ) ) )
209208a2d 26 . . . . 5  |-  ( ( x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
)  ->  ( ( ph  ->  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  (
( x  /L
N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  /L
N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) )  -> 
( ph  ->  ( ( ( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1  ->  (
( ( x  x.  y )  /L
N )  x.  ( N  /L ( x  x.  y ) ) )  =  ( -u
1 ^ ( ( ( ( x  x.  y )  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )
210142, 209syl5bir 218 . . . 4  |-  ( ( x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
)  ->  ( (
( ph  ->  ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  (
( x  /L
N )  x.  ( N  /L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )  /\  ( ph  ->  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  ( (
y  /L N )  x.  ( N  /L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) )  -> 
( ph  ->  ( ( ( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1  ->  (
( ( x  x.  y )  /L
N )  x.  ( N  /L ( x  x.  y ) ) )  =  ( -u
1 ^ ( ( ( ( x  x.  y )  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )
21134, 46, 58, 70, 82, 112, 141, 210prmind 13771 . . 3  |-  ( M  e.  NN  ->  ( ph  ->  ( ( M  gcd  ( 2  x.  N ) )  =  1  ->  ( ( M  /L N )  x.  ( N  /L M ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) )
2121, 211mpcom 36 . 2  |-  ( ph  ->  ( ( M  gcd  ( 2  x.  N
) )  =  1  ->  ( ( M  /L N )  x.  ( N  /L M ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) )
21318, 212mpd 15 1  |-  ( ph  ->  ( ( M  /L N )  x.  ( N  /L
M ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761    =/= wne 2604   A.wral 2713    \ cdif 3322   {csn 3874   class class class wbr 4289   ` cfv 5415  (class class class)co 6090   CCcc 9276   0cc0 9278   1c1 9279    x. cmul 9283    < clt 9414    - cmin 9591   -ucneg 9592    / cdiv 9989   NNcn 10318   2c2 10367   NN0cn0 10575   ZZcz 10642   ZZ>=cuz 10857   ...cfz 11433   ^cexp 11861    || cdivides 13531    gcd cgcd 13686   Primecprime 13759    /Lclgs 22592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-map 7212  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-sup 7687  df-card 8105  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-n0 10576  df-z 10643  df-uz 10858  df-q 10950  df-rp 10988  df-fz 11434  df-fzo 11545  df-fl 11638  df-mod 11705  df-seq 11803  df-exp 11862  df-hash 12100  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-dvds 13532  df-gcd 13687  df-prm 13760  df-phi 13837  df-pc 13900  df-lgs 22593
This theorem is referenced by:  lgsquad2  22658
  Copyright terms: Public domain W3C validator