MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsquad2lem1 Unicode version

Theorem lgsquad2lem1 21095
Description: Lemma for lgsquad2 21097. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
lgsquad2.1  |-  ( ph  ->  M  e.  NN )
lgsquad2.2  |-  ( ph  ->  -.  2  ||  M
)
lgsquad2.3  |-  ( ph  ->  N  e.  NN )
lgsquad2.4  |-  ( ph  ->  -.  2  ||  N
)
lgsquad2.5  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
lgsquad2lem1.a  |-  ( ph  ->  A  e.  NN )
lgsquad2lem1.b  |-  ( ph  ->  B  e.  NN )
lgsquad2lem1.m  |-  ( ph  ->  ( A  x.  B
)  =  M )
lgsquad2lem1.1  |-  ( ph  ->  ( ( A  / L N )  x.  ( N  / L A ) )  =  ( -u
1 ^ ( ( ( A  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )
lgsquad2lem1.2  |-  ( ph  ->  ( ( B  / L N )  x.  ( N  / L B ) )  =  ( -u
1 ^ ( ( ( B  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )
Assertion
Ref Expression
lgsquad2lem1  |-  ( ph  ->  ( ( M  / L N )  x.  ( N  / L M ) )  =  ( -u
1 ^ ( ( ( M  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )

Proof of Theorem lgsquad2lem1
StepHypRef Expression
1 lgsquad2lem1.m . . . . . . . . . . 11  |-  ( ph  ->  ( A  x.  B
)  =  M )
2 lgsquad2lem1.a . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  e.  NN )
32nnzd 10330 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  ZZ )
43zcnd 10332 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  e.  CC )
5 ax-1cn 9004 . . . . . . . . . . . . . 14  |-  1  e.  CC
6 npcan 9270 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  - 
1 )  +  1 )  =  A )
74, 5, 6sylancl 644 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A  - 
1 )  +  1 )  =  A )
8 lgsquad2lem1.b . . . . . . . . . . . . . . . 16  |-  ( ph  ->  B  e.  NN )
98nnzd 10330 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  e.  ZZ )
109zcnd 10332 . . . . . . . . . . . . . 14  |-  ( ph  ->  B  e.  CC )
11 npcan 9270 . . . . . . . . . . . . . 14  |-  ( ( B  e.  CC  /\  1  e.  CC )  ->  ( ( B  - 
1 )  +  1 )  =  B )
1210, 5, 11sylancl 644 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( B  - 
1 )  +  1 )  =  B )
137, 12oveq12d 6058 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( A  -  1 )  +  1 )  x.  (
( B  -  1 )  +  1 ) )  =  ( A  x.  B ) )
14 peano2zm 10276 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ZZ  ->  ( A  -  1 )  e.  ZZ )
153, 14syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  -  1 )  e.  ZZ )
1615zcnd 10332 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A  -  1 )  e.  CC )
175a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  1  e.  CC )
18 peano2zm 10276 . . . . . . . . . . . . . . . 16  |-  ( B  e.  ZZ  ->  ( B  -  1 )  e.  ZZ )
199, 18syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( B  -  1 )  e.  ZZ )
2019zcnd 10332 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( B  -  1 )  e.  CC )
2116, 17, 20, 17muladdd 9447 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( A  -  1 )  +  1 )  x.  (
( B  -  1 )  +  1 ) )  =  ( ( ( ( A  - 
1 )  x.  ( B  -  1 ) )  +  ( 1  x.  1 ) )  +  ( ( ( A  -  1 )  x.  1 )  +  ( ( B  - 
1 )  x.  1 ) ) ) )
22 1t1e1 10082 . . . . . . . . . . . . . . . 16  |-  ( 1  x.  1 )  =  1
2322a1i 11 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1  x.  1 )  =  1 )
2423oveq2d 6056 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( A  -  1 )  x.  ( B  -  1 ) )  +  ( 1  x.  1 ) )  =  ( ( ( A  -  1 )  x.  ( B  -  1 ) )  +  1 ) )
2516mulid1d 9061 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( A  - 
1 )  x.  1 )  =  ( A  -  1 ) )
2620mulid1d 9061 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( B  - 
1 )  x.  1 )  =  ( B  -  1 ) )
2725, 26oveq12d 6058 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( A  -  1 )  x.  1 )  +  ( ( B  -  1 )  x.  1 ) )  =  ( ( A  -  1 )  +  ( B  - 
1 ) ) )
2824, 27oveq12d 6058 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( A  -  1 )  x.  ( B  - 
1 ) )  +  ( 1  x.  1 ) )  +  ( ( ( A  - 
1 )  x.  1 )  +  ( ( B  -  1 )  x.  1 ) ) )  =  ( ( ( ( A  - 
1 )  x.  ( B  -  1 ) )  +  1 )  +  ( ( A  -  1 )  +  ( B  -  1 ) ) ) )
2921, 28eqtrd 2436 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( A  -  1 )  +  1 )  x.  (
( B  -  1 )  +  1 ) )  =  ( ( ( ( A  - 
1 )  x.  ( B  -  1 ) )  +  1 )  +  ( ( A  -  1 )  +  ( B  -  1 ) ) ) )
3013, 29eqtr3d 2438 . . . . . . . . . . 11  |-  ( ph  ->  ( A  x.  B
)  =  ( ( ( ( A  - 
1 )  x.  ( B  -  1 ) )  +  1 )  +  ( ( A  -  1 )  +  ( B  -  1 ) ) ) )
311, 30eqtr3d 2438 . . . . . . . . . 10  |-  ( ph  ->  M  =  ( ( ( ( A  - 
1 )  x.  ( B  -  1 ) )  +  1 )  +  ( ( A  -  1 )  +  ( B  -  1 ) ) ) )
3231oveq1d 6055 . . . . . . . . 9  |-  ( ph  ->  ( M  -  1 )  =  ( ( ( ( ( A  -  1 )  x.  ( B  -  1 ) )  +  1 )  +  ( ( A  -  1 )  +  ( B  - 
1 ) ) )  -  1 ) )
3316, 20mulcld 9064 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A  - 
1 )  x.  ( B  -  1 ) )  e.  CC )
34 addcl 9028 . . . . . . . . . . 11  |-  ( ( ( ( A  - 
1 )  x.  ( B  -  1 ) )  e.  CC  /\  1  e.  CC )  ->  ( ( ( A  -  1 )  x.  ( B  -  1 ) )  +  1 )  e.  CC )
3533, 5, 34sylancl 644 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( A  -  1 )  x.  ( B  -  1 ) )  +  1 )  e.  CC )
3616, 20addcld 9063 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  - 
1 )  +  ( B  -  1 ) )  e.  CC )
3735, 36, 17addsubd 9388 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( ( A  -  1 )  x.  ( B  -  1 ) )  +  1 )  +  ( ( A  - 
1 )  +  ( B  -  1 ) ) )  -  1 )  =  ( ( ( ( ( A  -  1 )  x.  ( B  -  1 ) )  +  1 )  -  1 )  +  ( ( A  -  1 )  +  ( B  -  1 ) ) ) )
38 pncan 9267 . . . . . . . . . . 11  |-  ( ( ( ( A  - 
1 )  x.  ( B  -  1 ) )  e.  CC  /\  1  e.  CC )  ->  ( ( ( ( A  -  1 )  x.  ( B  - 
1 ) )  +  1 )  -  1 )  =  ( ( A  -  1 )  x.  ( B  - 
1 ) ) )
3933, 5, 38sylancl 644 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( A  -  1 )  x.  ( B  - 
1 ) )  +  1 )  -  1 )  =  ( ( A  -  1 )  x.  ( B  - 
1 ) ) )
4039oveq1d 6055 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( ( A  -  1 )  x.  ( B  -  1 ) )  +  1 )  - 
1 )  +  ( ( A  -  1 )  +  ( B  -  1 ) ) )  =  ( ( ( A  -  1 )  x.  ( B  -  1 ) )  +  ( ( A  -  1 )  +  ( B  -  1 ) ) ) )
4132, 37, 403eqtrd 2440 . . . . . . . 8  |-  ( ph  ->  ( M  -  1 )  =  ( ( ( A  -  1 )  x.  ( B  -  1 ) )  +  ( ( A  -  1 )  +  ( B  -  1 ) ) ) )
4241oveq1d 6055 . . . . . . 7  |-  ( ph  ->  ( ( M  - 
1 )  /  2
)  =  ( ( ( ( A  - 
1 )  x.  ( B  -  1 ) )  +  ( ( A  -  1 )  +  ( B  - 
1 ) ) )  /  2 ) )
43 2cn 10026 . . . . . . . . 9  |-  2  e.  CC
4443a1i 11 . . . . . . . 8  |-  ( ph  ->  2  e.  CC )
45 2ne0 10039 . . . . . . . . 9  |-  2  =/=  0
4645a1i 11 . . . . . . . 8  |-  ( ph  ->  2  =/=  0 )
4733, 36, 44, 46divdird 9784 . . . . . . 7  |-  ( ph  ->  ( ( ( ( A  -  1 )  x.  ( B  - 
1 ) )  +  ( ( A  - 
1 )  +  ( B  -  1 ) ) )  /  2
)  =  ( ( ( ( A  - 
1 )  x.  ( B  -  1 ) )  /  2 )  +  ( ( ( A  -  1 )  +  ( B  - 
1 ) )  / 
2 ) ) )
4816, 20, 44, 46divassd 9781 . . . . . . . . 9  |-  ( ph  ->  ( ( ( A  -  1 )  x.  ( B  -  1 ) )  /  2
)  =  ( ( A  -  1 )  x.  ( ( B  -  1 )  / 
2 ) ) )
4916, 44, 46divcan2d 9748 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  (
( A  -  1 )  /  2 ) )  =  ( A  -  1 ) )
5049oveq1d 6055 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  ( ( A  - 
1 )  /  2
) )  x.  (
( B  -  1 )  /  2 ) )  =  ( ( A  -  1 )  x.  ( ( B  -  1 )  / 
2 ) ) )
51 lgsquad2.2 . . . . . . . . . . . . . 14  |-  ( ph  ->  -.  2  ||  M
)
52 dvdsmul1 12826 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A  ||  ( A  x.  B ) )
533, 9, 52syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  ||  ( A  x.  B ) )
5453, 1breqtrd 4196 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  ||  M )
55 2z 10268 . . . . . . . . . . . . . . . . 17  |-  2  e.  ZZ
5655a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  2  e.  ZZ )
57 lgsquad2.1 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  M  e.  NN )
5857nnzd 10330 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  M  e.  ZZ )
59 dvdstr 12838 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  ZZ  /\  A  e.  ZZ  /\  M  e.  ZZ )  ->  (
( 2  ||  A  /\  A  ||  M )  ->  2  ||  M
) )
6056, 3, 58, 59syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 2  ||  A  /\  A  ||  M
)  ->  2  ||  M ) )
6154, 60mpan2d 656 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 2  ||  A  ->  2  ||  M ) )
6251, 61mtod 170 . . . . . . . . . . . . 13  |-  ( ph  ->  -.  2  ||  A
)
63 1z 10267 . . . . . . . . . . . . . 14  |-  1  e.  ZZ
6463a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  1  e.  ZZ )
65 2prm 13050 . . . . . . . . . . . . . 14  |-  2  e.  Prime
66 nprmdvds1 13066 . . . . . . . . . . . . . 14  |-  ( 2  e.  Prime  ->  -.  2  ||  1 )
6765, 66mp1i 12 . . . . . . . . . . . . 13  |-  ( ph  ->  -.  2  ||  1
)
68 omoe 13141 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( 1  e.  ZZ  /\  -.  2  ||  1 ) )  ->  2  ||  ( A  -  1 ) )
693, 62, 64, 67, 68syl22anc 1185 . . . . . . . . . . . 12  |-  ( ph  ->  2  ||  ( A  -  1 ) )
70 dvdsval2 12810 . . . . . . . . . . . . 13  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  ( A  -  1 )  e.  ZZ )  -> 
( 2  ||  ( A  -  1 )  <-> 
( ( A  - 
1 )  /  2
)  e.  ZZ ) )
7156, 46, 15, 70syl3anc 1184 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2  ||  ( A  -  1 )  <-> 
( ( A  - 
1 )  /  2
)  e.  ZZ ) )
7269, 71mpbid 202 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A  - 
1 )  /  2
)  e.  ZZ )
7372zcnd 10332 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  - 
1 )  /  2
)  e.  CC )
74 dvdsmul2 12827 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  B  ||  ( A  x.  B ) )
753, 9, 74syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  B  ||  ( A  x.  B ) )
7675, 1breqtrd 4196 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  ||  M )
77 dvdstr 12838 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  ZZ )  ->  (
( 2  ||  B  /\  B  ||  M )  ->  2  ||  M
) )
7856, 9, 58, 77syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 2  ||  B  /\  B  ||  M
)  ->  2  ||  M ) )
7976, 78mpan2d 656 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 2  ||  B  ->  2  ||  M ) )
8051, 79mtod 170 . . . . . . . . . . . . 13  |-  ( ph  ->  -.  2  ||  B
)
81 omoe 13141 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  ZZ  /\ 
-.  2  ||  B
)  /\  ( 1  e.  ZZ  /\  -.  2  ||  1 ) )  ->  2  ||  ( B  -  1 ) )
829, 80, 64, 67, 81syl22anc 1185 . . . . . . . . . . . 12  |-  ( ph  ->  2  ||  ( B  -  1 ) )
83 dvdsval2 12810 . . . . . . . . . . . . 13  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  ( B  -  1 )  e.  ZZ )  -> 
( 2  ||  ( B  -  1 )  <-> 
( ( B  - 
1 )  /  2
)  e.  ZZ ) )
8456, 46, 19, 83syl3anc 1184 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2  ||  ( B  -  1 )  <-> 
( ( B  - 
1 )  /  2
)  e.  ZZ ) )
8582, 84mpbid 202 . . . . . . . . . . 11  |-  ( ph  ->  ( ( B  - 
1 )  /  2
)  e.  ZZ )
8685zcnd 10332 . . . . . . . . . 10  |-  ( ph  ->  ( ( B  - 
1 )  /  2
)  e.  CC )
8744, 73, 86mulassd 9067 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  ( ( A  - 
1 )  /  2
) )  x.  (
( B  -  1 )  /  2 ) )  =  ( 2  x.  ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) ) ) )
8848, 50, 873eqtr2d 2442 . . . . . . . 8  |-  ( ph  ->  ( ( ( A  -  1 )  x.  ( B  -  1 ) )  /  2
)  =  ( 2  x.  ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) ) ) )
8916, 20, 44, 46divdird 9784 . . . . . . . 8  |-  ( ph  ->  ( ( ( A  -  1 )  +  ( B  -  1 ) )  /  2
)  =  ( ( ( A  -  1 )  /  2 )  +  ( ( B  -  1 )  / 
2 ) ) )
9088, 89oveq12d 6058 . . . . . . 7  |-  ( ph  ->  ( ( ( ( A  -  1 )  x.  ( B  - 
1 ) )  / 
2 )  +  ( ( ( A  - 
1 )  +  ( B  -  1 ) )  /  2 ) )  =  ( ( 2  x.  ( ( ( A  -  1 )  /  2 )  x.  ( ( B  -  1 )  / 
2 ) ) )  +  ( ( ( A  -  1 )  /  2 )  +  ( ( B  - 
1 )  /  2
) ) ) )
9142, 47, 903eqtrd 2440 . . . . . 6  |-  ( ph  ->  ( ( M  - 
1 )  /  2
)  =  ( ( 2  x.  ( ( ( A  -  1 )  /  2 )  x.  ( ( B  -  1 )  / 
2 ) ) )  +  ( ( ( A  -  1 )  /  2 )  +  ( ( B  - 
1 )  /  2
) ) ) )
9291oveq1d 6055 . . . . 5  |-  ( ph  ->  ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) )  =  ( ( ( 2  x.  (
( ( A  - 
1 )  /  2
)  x.  ( ( B  -  1 )  /  2 ) ) )  +  ( ( ( A  -  1 )  /  2 )  +  ( ( B  -  1 )  / 
2 ) ) )  x.  ( ( N  -  1 )  / 
2 ) ) )
9372, 85zmulcld 10337 . . . . . . . 8  |-  ( ph  ->  ( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) )  e.  ZZ )
9456, 93zmulcld 10337 . . . . . . 7  |-  ( ph  ->  ( 2  x.  (
( ( A  - 
1 )  /  2
)  x.  ( ( B  -  1 )  /  2 ) ) )  e.  ZZ )
9594zcnd 10332 . . . . . 6  |-  ( ph  ->  ( 2  x.  (
( ( A  - 
1 )  /  2
)  x.  ( ( B  -  1 )  /  2 ) ) )  e.  CC )
9672, 85zaddcld 10335 . . . . . . 7  |-  ( ph  ->  ( ( ( A  -  1 )  / 
2 )  +  ( ( B  -  1 )  /  2 ) )  e.  ZZ )
9796zcnd 10332 . . . . . 6  |-  ( ph  ->  ( ( ( A  -  1 )  / 
2 )  +  ( ( B  -  1 )  /  2 ) )  e.  CC )
98 lgsquad2.3 . . . . . . . . . 10  |-  ( ph  ->  N  e.  NN )
9998nnzd 10330 . . . . . . . . 9  |-  ( ph  ->  N  e.  ZZ )
100 lgsquad2.4 . . . . . . . . 9  |-  ( ph  ->  -.  2  ||  N
)
101 omoe 13141 . . . . . . . . 9  |-  ( ( ( N  e.  ZZ  /\ 
-.  2  ||  N
)  /\  ( 1  e.  ZZ  /\  -.  2  ||  1 ) )  ->  2  ||  ( N  -  1 ) )
10299, 100, 64, 67, 101syl22anc 1185 . . . . . . . 8  |-  ( ph  ->  2  ||  ( N  -  1 ) )
103 peano2zm 10276 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
10499, 103syl 16 . . . . . . . . 9  |-  ( ph  ->  ( N  -  1 )  e.  ZZ )
105 dvdsval2 12810 . . . . . . . . 9  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  ( N  -  1 )  e.  ZZ )  -> 
( 2  ||  ( N  -  1 )  <-> 
( ( N  - 
1 )  /  2
)  e.  ZZ ) )
10656, 46, 104, 105syl3anc 1184 . . . . . . . 8  |-  ( ph  ->  ( 2  ||  ( N  -  1 )  <-> 
( ( N  - 
1 )  /  2
)  e.  ZZ ) )
107102, 106mpbid 202 . . . . . . 7  |-  ( ph  ->  ( ( N  - 
1 )  /  2
)  e.  ZZ )
108107zcnd 10332 . . . . . 6  |-  ( ph  ->  ( ( N  - 
1 )  /  2
)  e.  CC )
10995, 97, 108adddird 9069 . . . . 5  |-  ( ph  ->  ( ( ( 2  x.  ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) ) )  +  ( ( ( A  -  1 )  / 
2 )  +  ( ( B  -  1 )  /  2 ) ) )  x.  (
( N  -  1 )  /  2 ) )  =  ( ( ( 2  x.  (
( ( A  - 
1 )  /  2
)  x.  ( ( B  -  1 )  /  2 ) ) )  x.  ( ( N  -  1 )  /  2 ) )  +  ( ( ( ( A  -  1 )  /  2 )  +  ( ( B  -  1 )  / 
2 ) )  x.  ( ( N  - 
1 )  /  2
) ) ) )
11093zcnd 10332 . . . . . . 7  |-  ( ph  ->  ( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) )  e.  CC )
11144, 110, 108mulassd 9067 . . . . . 6  |-  ( ph  ->  ( ( 2  x.  ( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) ) )  x.  (
( N  -  1 )  /  2 ) )  =  ( 2  x.  ( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  -  1 )  / 
2 ) )  x.  ( ( N  - 
1 )  /  2
) ) ) )
112111oveq1d 6055 . . . . 5  |-  ( ph  ->  ( ( ( 2  x.  ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) ) )  x.  ( ( N  - 
1 )  /  2
) )  +  ( ( ( ( A  -  1 )  / 
2 )  +  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) ) )  =  ( ( 2  x.  ( ( ( ( A  - 
1 )  /  2
)  x.  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  / 
2 ) ) )  +  ( ( ( ( A  -  1 )  /  2 )  +  ( ( B  -  1 )  / 
2 ) )  x.  ( ( N  - 
1 )  /  2
) ) ) )
11392, 109, 1123eqtrd 2440 . . . 4  |-  ( ph  ->  ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) )  =  ( ( 2  x.  ( ( ( ( A  - 
1 )  /  2
)  x.  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  / 
2 ) ) )  +  ( ( ( ( A  -  1 )  /  2 )  +  ( ( B  -  1 )  / 
2 ) )  x.  ( ( N  - 
1 )  /  2
) ) ) )
114113oveq2d 6056 . . 3  |-  ( ph  ->  ( -u 1 ^ ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) )  =  (
-u 1 ^ (
( 2  x.  (
( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) ) )  +  ( ( ( ( A  - 
1 )  /  2
)  +  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
115 neg1cn 10023 . . . . . 6  |-  -u 1  e.  CC
116115a1i 11 . . . . 5  |-  ( ph  -> 
-u 1  e.  CC )
117 ax-1ne0 9015 . . . . . . 7  |-  1  =/=  0
1185, 117negne0i 9331 . . . . . 6  |-  -u 1  =/=  0
119118a1i 11 . . . . 5  |-  ( ph  -> 
-u 1  =/=  0
)
12093, 107zmulcld 10337 . . . . . 6  |-  ( ph  ->  ( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) )  e.  ZZ )
12156, 120zmulcld 10337 . . . . 5  |-  ( ph  ->  ( 2  x.  (
( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) ) )  e.  ZZ )
12296, 107zmulcld 10337 . . . . 5  |-  ( ph  ->  ( ( ( ( A  -  1 )  /  2 )  +  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) )  e.  ZZ )
123 expaddz 11379 . . . . 5  |-  ( ( ( -u 1  e.  CC  /\  -u 1  =/=  0 )  /\  (
( 2  x.  (
( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) ) )  e.  ZZ  /\  ( ( ( ( A  -  1 )  /  2 )  +  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) )  e.  ZZ ) )  ->  ( -u 1 ^ ( ( 2  x.  ( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  -  1 )  / 
2 ) )  x.  ( ( N  - 
1 )  /  2
) ) )  +  ( ( ( ( A  -  1 )  /  2 )  +  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) ) )  =  ( ( -u 1 ^ ( 2  x.  ( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) ) )  x.  ( -u 1 ^ ( ( ( ( A  -  1 )  /  2 )  +  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) ) ) )
124116, 119, 121, 122, 123syl22anc 1185 . . . 4  |-  ( ph  ->  ( -u 1 ^ ( ( 2  x.  ( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) )  +  ( ( ( ( A  -  1 )  / 
2 )  +  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) ) ) )  =  ( ( -u 1 ^ ( 2  x.  (
( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) ) ) )  x.  ( -u 1 ^ ( ( ( ( A  - 
1 )  /  2
)  +  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
125 expmulz 11381 . . . . . . 7  |-  ( ( ( -u 1  e.  CC  /\  -u 1  =/=  0 )  /\  (
2  e.  ZZ  /\  ( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) )  e.  ZZ ) )  ->  ( -u 1 ^ ( 2  x.  ( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) ) )  =  ( ( -u 1 ^ 2 ) ^
( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) ) )
126116, 119, 56, 120, 125syl22anc 1185 . . . . . 6  |-  ( ph  ->  ( -u 1 ^ ( 2  x.  (
( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) ) ) )  =  ( ( -u 1 ^ 2 ) ^ (
( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) ) ) )
127 sqneg 11397 . . . . . . . . . 10  |-  ( 1  e.  CC  ->  ( -u 1 ^ 2 )  =  ( 1 ^ 2 ) )
1285, 127ax-mp 8 . . . . . . . . 9  |-  ( -u
1 ^ 2 )  =  ( 1 ^ 2 )
129 sq1 11431 . . . . . . . . 9  |-  ( 1 ^ 2 )  =  1
130128, 129eqtri 2424 . . . . . . . 8  |-  ( -u
1 ^ 2 )  =  1
131130oveq1i 6050 . . . . . . 7  |-  ( (
-u 1 ^ 2 ) ^ ( ( ( ( A  - 
1 )  /  2
)  x.  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  / 
2 ) ) )  =  ( 1 ^ ( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) )
132 1exp 11364 . . . . . . . 8  |-  ( ( ( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) )  e.  ZZ  ->  (
1 ^ ( ( ( ( A  - 
1 )  /  2
)  x.  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  / 
2 ) ) )  =  1 )
133120, 132syl 16 . . . . . . 7  |-  ( ph  ->  ( 1 ^ (
( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) ) )  =  1 )
134131, 133syl5eq 2448 . . . . . 6  |-  ( ph  ->  ( ( -u 1 ^ 2 ) ^
( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) )  =  1 )
135126, 134eqtrd 2436 . . . . 5  |-  ( ph  ->  ( -u 1 ^ ( 2  x.  (
( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) ) ) )  =  1 )
136135oveq1d 6055 . . . 4  |-  ( ph  ->  ( ( -u 1 ^ ( 2  x.  ( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) ) )  x.  ( -u 1 ^ ( ( ( ( A  -  1 )  /  2 )  +  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) ) )  =  ( 1  x.  ( -u 1 ^ ( ( ( ( A  - 
1 )  /  2
)  +  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
137124, 136eqtrd 2436 . . 3  |-  ( ph  ->  ( -u 1 ^ ( ( 2  x.  ( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) )  +  ( ( ( ( A  -  1 )  / 
2 )  +  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) ) ) )  =  ( 1  x.  ( -u
1 ^ ( ( ( ( A  - 
1 )  /  2
)  +  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
138116, 119, 122expclzd 11483 . . . . 5  |-  ( ph  ->  ( -u 1 ^ ( ( ( ( A  -  1 )  /  2 )  +  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) )  e.  CC )
139138mulid2d 9062 . . . 4  |-  ( ph  ->  ( 1  x.  ( -u 1 ^ ( ( ( ( A  - 
1 )  /  2
)  +  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  =  ( -u
1 ^ ( ( ( ( A  - 
1 )  /  2
)  +  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  / 
2 ) ) ) )
14073, 86, 108adddird 9069 . . . . 5  |-  ( ph  ->  ( ( ( ( A  -  1 )  /  2 )  +  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) )  =  ( ( ( ( A  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) )  +  ( ( ( B  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
141140oveq2d 6056 . . . 4  |-  ( ph  ->  ( -u 1 ^ ( ( ( ( A  -  1 )  /  2 )  +  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) )  =  (
-u 1 ^ (
( ( ( A  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) )  +  ( ( ( B  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
142139, 141eqtrd 2436 . . 3  |-  ( ph  ->  ( 1  x.  ( -u 1 ^ ( ( ( ( A  - 
1 )  /  2
)  +  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  =  ( -u
1 ^ ( ( ( ( A  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) )  +  ( ( ( B  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) )
143114, 137, 1423eqtrd 2440 . 2  |-  ( ph  ->  ( -u 1 ^ ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) )  =  (
-u 1 ^ (
( ( ( A  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) )  +  ( ( ( B  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
144 lgsquad2lem1.1 . . . 4  |-  ( ph  ->  ( ( A  / L N )  x.  ( N  / L A ) )  =  ( -u
1 ^ ( ( ( A  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )
145 lgsquad2lem1.2 . . . 4  |-  ( ph  ->  ( ( B  / L N )  x.  ( N  / L B ) )  =  ( -u
1 ^ ( ( ( B  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )
146144, 145oveq12d 6058 . . 3  |-  ( ph  ->  ( ( ( A  / L N )  x.  ( N  / L A ) )  x.  ( ( B  / L N )  x.  ( N  / L B ) ) )  =  ( ( -u 1 ^ ( ( ( A  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) )  x.  ( -u 1 ^ ( ( ( B  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
14772, 107zmulcld 10337 . . . 4  |-  ( ph  ->  ( ( ( A  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) )  e.  ZZ )
14885, 107zmulcld 10337 . . . 4  |-  ( ph  ->  ( ( ( B  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) )  e.  ZZ )
149 expaddz 11379 . . . 4  |-  ( ( ( -u 1  e.  CC  /\  -u 1  =/=  0 )  /\  (
( ( ( A  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) )  e.  ZZ  /\  ( ( ( B  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) )  e.  ZZ ) )  ->  ( -u 1 ^ ( ( ( ( A  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) )  +  ( ( ( B  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) )  =  ( ( -u 1 ^ ( ( ( A  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) )  x.  ( -u 1 ^ ( ( ( B  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) ) )
150116, 119, 147, 148, 149syl22anc 1185 . . 3  |-  ( ph  ->  ( -u 1 ^ ( ( ( ( A  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) )  +  ( ( ( B  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) ) ) )  =  ( ( -u 1 ^ ( ( ( A  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) )  x.  ( -u 1 ^ ( ( ( B  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
151146, 150eqtr4d 2439 . 2  |-  ( ph  ->  ( ( ( A  / L N )  x.  ( N  / L A ) )  x.  ( ( B  / L N )  x.  ( N  / L B ) ) )  =  (
-u 1 ^ (
( ( ( A  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) )  +  ( ( ( B  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
152 lgscl 21047 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  / L N )  e.  ZZ )
1533, 99, 152syl2anc 643 . . . . 5  |-  ( ph  ->  ( A  / L N )  e.  ZZ )
154153zcnd 10332 . . . 4  |-  ( ph  ->  ( A  / L N )  e.  CC )
155 lgscl 21047 . . . . . 6  |-  ( ( B  e.  ZZ  /\  N  e.  ZZ )  ->  ( B  / L N )  e.  ZZ )
1569, 99, 155syl2anc 643 . . . . 5  |-  ( ph  ->  ( B  / L N )  e.  ZZ )
157156zcnd 10332 . . . 4  |-  ( ph  ->  ( B  / L N )  e.  CC )
158 lgscl 21047 . . . . . 6  |-  ( ( N  e.  ZZ  /\  A  e.  ZZ )  ->  ( N  / L A )  e.  ZZ )
15999, 3, 158syl2anc 643 . . . . 5  |-  ( ph  ->  ( N  / L A )  e.  ZZ )
160159zcnd 10332 . . . 4  |-  ( ph  ->  ( N  / L A )  e.  CC )
161 lgscl 21047 . . . . . 6  |-  ( ( N  e.  ZZ  /\  B  e.  ZZ )  ->  ( N  / L B )  e.  ZZ )
16299, 9, 161syl2anc 643 . . . . 5  |-  ( ph  ->  ( N  / L B )  e.  ZZ )
163162zcnd 10332 . . . 4  |-  ( ph  ->  ( N  / L B )  e.  CC )
164154, 157, 160, 163mul4d 9234 . . 3  |-  ( ph  ->  ( ( ( A  / L N )  x.  ( B  / L N ) )  x.  ( ( N  / L A )  x.  ( N  / L B ) ) )  =  ( ( ( A  / L N )  x.  ( N  / L A ) )  x.  ( ( B  / L N
)  x.  ( N  / L B ) ) ) )
1652nnne0d 10000 . . . . . 6  |-  ( ph  ->  A  =/=  0 )
1668nnne0d 10000 . . . . . 6  |-  ( ph  ->  B  =/=  0 )
167 lgsdir 21067 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  (
( A  x.  B
)  / L N
)  =  ( ( A  / L N
)  x.  ( B  / L N ) ) )
1683, 9, 99, 165, 166, 167syl32anc 1192 . . . . 5  |-  ( ph  ->  ( ( A  x.  B )  / L N )  =  ( ( A  / L N )  x.  ( B  / L N ) ) )
1691oveq1d 6055 . . . . 5  |-  ( ph  ->  ( ( A  x.  B )  / L N )  =  ( M  / L N
) )
170168, 169eqtr3d 2438 . . . 4  |-  ( ph  ->  ( ( A  / L N )  x.  ( B  / L N ) )  =  ( M  / L N ) )
171 lgsdi 21069 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( N  / L ( A  x.  B ) )  =  ( ( N  / L A )  x.  ( N  / L B ) ) )
17299, 3, 9, 165, 166, 171syl32anc 1192 . . . . 5  |-  ( ph  ->  ( N  / L
( A  x.  B
) )  =  ( ( N  / L A )  x.  ( N  / L B ) ) )
1731oveq2d 6056 . . . . 5  |-  ( ph  ->  ( N  / L
( A  x.  B
) )  =  ( N  / L M
) )
174172, 173eqtr3d 2438 . . . 4  |-  ( ph  ->  ( ( N  / L A )  x.  ( N  / L B ) )  =  ( N  / L M ) )
175170, 174oveq12d 6058 . . 3  |-  ( ph  ->  ( ( ( A  / L N )  x.  ( B  / L N ) )  x.  ( ( N  / L A )  x.  ( N  / L B ) ) )  =  ( ( M  / L N )  x.  ( N  / L M ) ) )
176164, 175eqtr3d 2438 . 2  |-  ( ph  ->  ( ( ( A  / L N )  x.  ( N  / L A ) )  x.  ( ( B  / L N )  x.  ( N  / L B ) ) )  =  ( ( M  / L N )  x.  ( N  / L M ) ) )
177143, 151, 1763eqtr2rd 2443 1  |-  ( ph  ->  ( ( M  / L N )  x.  ( N  / L M ) )  =  ( -u
1 ^ ( ( ( M  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   class class class wbr 4172  (class class class)co 6040   CCcc 8944   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    - cmin 9247   -ucneg 9248    / cdiv 9633   NNcn 9956   2c2 10005   ZZcz 10238   ^cexp 11337    || cdivides 12807    gcd cgcd 12961   Primecprime 13034    / Lclgs 21031
This theorem is referenced by:  lgsquad2lem2  21096
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-n0 10178  df-z 10239  df-uz 10445  df-q 10531  df-rp 10569  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-dvds 12808  df-gcd 12962  df-prm 13035  df-phi 13110  df-pc 13166  df-lgs 21032
  Copyright terms: Public domain W3C validator