MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsquad Structured version   Unicode version

Theorem lgsquad 23830
Description: The Law of Quadratic Reciprocity. If  P and  Q are distinct odd primes, then the product of the Legendre symbols  ( P  /L Q ) and  ( Q  /L P ) is the parity of  ( ( P  -  1 )  /  2 )  x.  ( ( Q  - 
1 )  /  2
). This uses Eisenstein's proof, which also has a nice geometric interpretation - see https://en.wikipedia.org/wiki/Proofs_of_quadratic_reciprocity. This is Metamath 100 proof #7. (Contributed by Mario Carneiro, 19-Jun-2015.)
Assertion
Ref Expression
lgsquad  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  Q  e.  ( Prime  \  { 2 } )  /\  P  =/=  Q )  ->  (
( P  /L
Q )  x.  ( Q  /L P ) )  =  ( -u
1 ^ ( ( ( P  -  1 )  /  2 )  x.  ( ( Q  -  1 )  / 
2 ) ) ) )

Proof of Theorem lgsquad
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 994 . 2  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  Q  e.  ( Prime  \  { 2 } )  /\  P  =/=  Q )  ->  P  e.  ( Prime  \  { 2 } ) )
2 simp2 995 . 2  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  Q  e.  ( Prime  \  { 2 } )  /\  P  =/=  Q )  ->  Q  e.  ( Prime  \  { 2 } ) )
3 simp3 996 . 2  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  Q  e.  ( Prime  \  { 2 } )  /\  P  =/=  Q )  ->  P  =/=  Q )
4 eqid 2454 . 2  |-  ( ( P  -  1 )  /  2 )  =  ( ( P  - 
1 )  /  2
)
5 eqid 2454 . 2  |-  ( ( Q  -  1 )  /  2 )  =  ( ( Q  - 
1 )  /  2
)
6 eleq1 2526 . . . . 5  |-  ( x  =  z  ->  (
x  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) )  <->  z  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ) )
7 eleq1 2526 . . . . 5  |-  ( y  =  w  ->  (
y  e.  ( 1 ... ( ( Q  -  1 )  / 
2 ) )  <->  w  e.  ( 1 ... (
( Q  -  1 )  /  2 ) ) ) )
86, 7bi2anan9 871 . . . 4  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  /\  y  e.  ( 1 ... (
( Q  -  1 )  /  2 ) ) )  <->  ( z  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  /\  w  e.  ( 1 ... (
( Q  -  1 )  /  2 ) ) ) ) )
9 oveq1 6277 . . . . 5  |-  ( y  =  w  ->  (
y  x.  P )  =  ( w  x.  P ) )
10 oveq1 6277 . . . . 5  |-  ( x  =  z  ->  (
x  x.  Q )  =  ( z  x.  Q ) )
119, 10breqan12rd 4455 . . . 4  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ( y  x.  P )  <  (
x  x.  Q )  <-> 
( w  x.  P
)  <  ( z  x.  Q ) ) )
128, 11anbi12d 708 . . 3  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ( ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  /\  y  e.  ( 1 ... (
( Q  -  1 )  /  2 ) ) )  /\  (
y  x.  P )  <  ( x  x.  Q ) )  <->  ( (
z  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) )  /\  w  e.  ( 1 ... ( ( Q  -  1 )  / 
2 ) ) )  /\  ( w  x.  P )  <  (
z  x.  Q ) ) ) )
1312cbvopabv 4508 . 2  |-  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) )  /\  y  e.  ( 1 ... ( ( Q  -  1 )  /  2 ) ) )  /\  ( y  x.  P )  < 
( x  x.  Q
) ) }  =  { <. z ,  w >.  |  ( ( z  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  /\  w  e.  ( 1 ... (
( Q  -  1 )  /  2 ) ) )  /\  (
w  x.  P )  <  ( z  x.  Q ) ) }
141, 2, 3, 4, 5, 13lgsquadlem3 23829 1  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  Q  e.  ( Prime  \  { 2 } )  /\  P  =/=  Q )  ->  (
( P  /L
Q )  x.  ( Q  /L P ) )  =  ( -u
1 ^ ( ( ( P  -  1 )  /  2 )  x.  ( ( Q  -  1 )  / 
2 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823    =/= wne 2649    \ cdif 3458   {csn 4016   class class class wbr 4439   {copab 4496  (class class class)co 6270   1c1 9482    x. cmul 9486    < clt 9617    - cmin 9796   -ucneg 9797    / cdiv 10202   2c2 10581   ...cfz 11675   ^cexp 12148   Primecprime 14301    /Lclgs 23767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-disj 4411  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-tpos 6947  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-er 7303  df-ec 7305  df-qs 7309  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-sup 7893  df-oi 7927  df-card 8311  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-q 11184  df-rp 11222  df-fz 11676  df-fzo 11800  df-fl 11910  df-mod 11979  df-seq 12090  df-exp 12149  df-hash 12388  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-clim 13393  df-sum 13591  df-dvds 14071  df-gcd 14229  df-prm 14302  df-phi 14380  df-pc 14445  df-struct 14718  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-mulr 14798  df-starv 14799  df-sca 14800  df-vsca 14801  df-ip 14802  df-tset 14803  df-ple 14804  df-ds 14806  df-unif 14807  df-0g 14931  df-gsum 14932  df-imas 14997  df-qus 14998  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-mhm 16165  df-submnd 16166  df-grp 16256  df-minusg 16257  df-sbg 16258  df-mulg 16259  df-subg 16397  df-nsg 16398  df-eqg 16399  df-ghm 16464  df-cntz 16554  df-cmn 16999  df-abl 17000  df-mgp 17337  df-ur 17349  df-ring 17395  df-cring 17396  df-oppr 17467  df-dvdsr 17485  df-unit 17486  df-invr 17516  df-dvr 17527  df-rnghom 17559  df-drng 17593  df-field 17594  df-subrg 17622  df-lmod 17709  df-lss 17774  df-lsp 17813  df-sra 18013  df-rgmod 18014  df-lidl 18015  df-rsp 18016  df-2idl 18075  df-nzr 18101  df-rlreg 18126  df-domn 18127  df-idom 18128  df-cnfld 18616  df-zring 18684  df-zrh 18716  df-zn 18719  df-lgs 23768
This theorem is referenced by:  lgsquad2  23833
  Copyright terms: Public domain W3C validator