MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsquad Structured version   Unicode version

Theorem lgsquad 22715
Description: The Law of Quadratic Reciprocity. If  P and  Q are distinct odd primes, then the product of the Legendre symbols  ( P  /L Q ) and  ( Q  /L P ) is the parity of  ( ( P  -  1 )  /  2 )  x.  ( ( Q  - 
1 )  /  2
). This uses Eisenstein's proof, which also has a nice geometric interpretation - see https://en.wikipedia.org/wiki/Proofs_of_quadratic_reciprocity. This is Metamath 100 proof #7. (Contributed by Mario Carneiro, 19-Jun-2015.)
Assertion
Ref Expression
lgsquad  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  Q  e.  ( Prime  \  { 2 } )  /\  P  =/=  Q )  ->  (
( P  /L
Q )  x.  ( Q  /L P ) )  =  ( -u
1 ^ ( ( ( P  -  1 )  /  2 )  x.  ( ( Q  -  1 )  / 
2 ) ) ) )

Proof of Theorem lgsquad
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 988 . 2  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  Q  e.  ( Prime  \  { 2 } )  /\  P  =/=  Q )  ->  P  e.  ( Prime  \  { 2 } ) )
2 simp2 989 . 2  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  Q  e.  ( Prime  \  { 2 } )  /\  P  =/=  Q )  ->  Q  e.  ( Prime  \  { 2 } ) )
3 simp3 990 . 2  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  Q  e.  ( Prime  \  { 2 } )  /\  P  =/=  Q )  ->  P  =/=  Q )
4 eqid 2443 . 2  |-  ( ( P  -  1 )  /  2 )  =  ( ( P  - 
1 )  /  2
)
5 eqid 2443 . 2  |-  ( ( Q  -  1 )  /  2 )  =  ( ( Q  - 
1 )  /  2
)
6 eleq1 2503 . . . . 5  |-  ( x  =  z  ->  (
x  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) )  <->  z  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ) )
7 eleq1 2503 . . . . 5  |-  ( y  =  w  ->  (
y  e.  ( 1 ... ( ( Q  -  1 )  / 
2 ) )  <->  w  e.  ( 1 ... (
( Q  -  1 )  /  2 ) ) ) )
86, 7bi2anan9 868 . . . 4  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  /\  y  e.  ( 1 ... (
( Q  -  1 )  /  2 ) ) )  <->  ( z  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  /\  w  e.  ( 1 ... (
( Q  -  1 )  /  2 ) ) ) ) )
9 oveq1 6117 . . . . 5  |-  ( y  =  w  ->  (
y  x.  P )  =  ( w  x.  P ) )
10 oveq1 6117 . . . . 5  |-  ( x  =  z  ->  (
x  x.  Q )  =  ( z  x.  Q ) )
119, 10breqan12rd 4327 . . . 4  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ( y  x.  P )  <  (
x  x.  Q )  <-> 
( w  x.  P
)  <  ( z  x.  Q ) ) )
128, 11anbi12d 710 . . 3  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ( ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  /\  y  e.  ( 1 ... (
( Q  -  1 )  /  2 ) ) )  /\  (
y  x.  P )  <  ( x  x.  Q ) )  <->  ( (
z  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) )  /\  w  e.  ( 1 ... ( ( Q  -  1 )  / 
2 ) ) )  /\  ( w  x.  P )  <  (
z  x.  Q ) ) ) )
1312cbvopabv 4380 . 2  |-  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) )  /\  y  e.  ( 1 ... ( ( Q  -  1 )  /  2 ) ) )  /\  ( y  x.  P )  < 
( x  x.  Q
) ) }  =  { <. z ,  w >.  |  ( ( z  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  /\  w  e.  ( 1 ... (
( Q  -  1 )  /  2 ) ) )  /\  (
w  x.  P )  <  ( z  x.  Q ) ) }
141, 2, 3, 4, 5, 13lgsquadlem3 22714 1  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  Q  e.  ( Prime  \  { 2 } )  /\  P  =/=  Q )  ->  (
( P  /L
Q )  x.  ( Q  /L P ) )  =  ( -u
1 ^ ( ( ( P  -  1 )  /  2 )  x.  ( ( Q  -  1 )  / 
2 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2620    \ cdif 3344   {csn 3896   class class class wbr 4311   {copab 4368  (class class class)co 6110   1c1 9302    x. cmul 9306    < clt 9437    - cmin 9614   -ucneg 9615    / cdiv 10012   2c2 10390   ...cfz 11456   ^cexp 11884   Primecprime 13782    /Lclgs 22652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4422  ax-sep 4432  ax-nul 4440  ax-pow 4489  ax-pr 4550  ax-un 6391  ax-inf2 7866  ax-cnex 9357  ax-resscn 9358  ax-1cn 9359  ax-icn 9360  ax-addcl 9361  ax-addrcl 9362  ax-mulcl 9363  ax-mulrcl 9364  ax-mulcom 9365  ax-addass 9366  ax-mulass 9367  ax-distr 9368  ax-i2m1 9369  ax-1ne0 9370  ax-1rid 9371  ax-rnegex 9372  ax-rrecex 9373  ax-cnre 9374  ax-pre-lttri 9375  ax-pre-lttrn 9376  ax-pre-ltadd 9377  ax-pre-mulgt0 9378  ax-pre-sup 9379  ax-addf 9380  ax-mulf 9381
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2739  df-rex 2740  df-reu 2741  df-rmo 2742  df-rab 2743  df-v 2993  df-sbc 3206  df-csb 3308  df-dif 3350  df-un 3352  df-in 3354  df-ss 3361  df-pss 3363  df-nul 3657  df-if 3811  df-pw 3881  df-sn 3897  df-pr 3899  df-tp 3901  df-op 3903  df-uni 4111  df-int 4148  df-iun 4192  df-disj 4282  df-br 4312  df-opab 4370  df-mpt 4371  df-tr 4405  df-eprel 4651  df-id 4655  df-po 4660  df-so 4661  df-fr 4698  df-se 4699  df-we 4700  df-ord 4741  df-on 4742  df-lim 4743  df-suc 4744  df-xp 4865  df-rel 4866  df-cnv 4867  df-co 4868  df-dm 4869  df-rn 4870  df-res 4871  df-ima 4872  df-iota 5400  df-fun 5439  df-fn 5440  df-f 5441  df-f1 5442  df-fo 5443  df-f1o 5444  df-fv 5445  df-isom 5446  df-riota 6071  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-of 6339  df-om 6496  df-1st 6596  df-2nd 6597  df-supp 6710  df-tpos 6764  df-recs 6851  df-rdg 6885  df-1o 6939  df-2o 6940  df-oadd 6943  df-er 7120  df-ec 7122  df-qs 7126  df-map 7235  df-en 7330  df-dom 7331  df-sdom 7332  df-fin 7333  df-fsupp 7640  df-sup 7710  df-oi 7743  df-card 8128  df-cda 8356  df-pnf 9439  df-mnf 9440  df-xr 9441  df-ltxr 9442  df-le 9443  df-sub 9616  df-neg 9617  df-div 10013  df-nn 10342  df-2 10399  df-3 10400  df-4 10401  df-5 10402  df-6 10403  df-7 10404  df-8 10405  df-9 10406  df-10 10407  df-n0 10599  df-z 10666  df-dec 10775  df-uz 10881  df-q 10973  df-rp 11011  df-fz 11457  df-fzo 11568  df-fl 11661  df-mod 11728  df-seq 11826  df-exp 11885  df-hash 12123  df-cj 12607  df-re 12608  df-im 12609  df-sqr 12743  df-abs 12744  df-clim 12985  df-sum 13183  df-dvds 13555  df-gcd 13710  df-prm 13783  df-phi 13860  df-pc 13923  df-struct 14195  df-ndx 14196  df-slot 14197  df-base 14198  df-sets 14199  df-ress 14200  df-plusg 14270  df-mulr 14271  df-starv 14272  df-sca 14273  df-vsca 14274  df-ip 14275  df-tset 14276  df-ple 14277  df-ds 14279  df-unif 14280  df-0g 14399  df-gsum 14400  df-imas 14465  df-divs 14466  df-mnd 15434  df-mhm 15483  df-submnd 15484  df-grp 15564  df-minusg 15565  df-sbg 15566  df-mulg 15567  df-subg 15697  df-nsg 15698  df-eqg 15699  df-ghm 15764  df-cntz 15854  df-cmn 16298  df-abl 16299  df-mgp 16611  df-ur 16623  df-rng 16666  df-cring 16667  df-oppr 16734  df-dvdsr 16752  df-unit 16753  df-invr 16783  df-dvr 16794  df-rnghom 16825  df-drng 16853  df-field 16854  df-subrg 16882  df-lmod 16969  df-lss 17033  df-lsp 17072  df-sra 17272  df-rgmod 17273  df-lidl 17274  df-rsp 17275  df-2idl 17333  df-nzr 17359  df-rlreg 17373  df-domn 17374  df-idom 17375  df-cnfld 17838  df-zring 17903  df-zrh 17954  df-zn 17957  df-lgs 22653
This theorem is referenced by:  lgsquad2  22718
  Copyright terms: Public domain W3C validator