MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqrlem4 Structured version   Unicode version

Theorem lgsqrlem4 22686
Description: Lemma for lgsqr 22688. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
lgsqr.y  |-  Y  =  (ℤ/n `  P )
lgsqr.s  |-  S  =  (Poly1 `  Y )
lgsqr.b  |-  B  =  ( Base `  S
)
lgsqr.d  |-  D  =  ( deg1  `  Y )
lgsqr.o  |-  O  =  (eval1 `  Y )
lgsqr.e  |-  .^  =  (.g
`  (mulGrp `  S )
)
lgsqr.x  |-  X  =  (var1 `  Y )
lgsqr.m  |-  .-  =  ( -g `  S )
lgsqr.u  |-  .1.  =  ( 1r `  S )
lgsqr.t  |-  T  =  ( ( ( ( P  -  1 )  /  2 )  .^  X )  .-  .1.  )
lgsqr.l  |-  L  =  ( ZRHom `  Y
)
lgsqr.1  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
lgsqr.g  |-  G  =  ( y  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
y ^ 2 ) ) )
lgsqr.3  |-  ( ph  ->  A  e.  ZZ )
lgsqr.4  |-  ( ph  ->  ( A  /L
P )  =  1 )
Assertion
Ref Expression
lgsqrlem4  |-  ( ph  ->  E. x  e.  ZZ  P  ||  ( ( x ^ 2 )  -  A ) )
Distinct variable groups:    x, A    x, G    y, O    x, y, P    ph, x, y   
y, T    x, L, y    x, Y, y
Allowed substitution hints:    A( y)    B( x, y)    D( x, y)    S( x, y)    T( x)    .1. ( x, y)    .^ ( x, y)    G( y)    .- ( x, y)    O( x)    X( x, y)

Proof of Theorem lgsqrlem4
StepHypRef Expression
1 lgsqr.y . . . . . . 7  |-  Y  =  (ℤ/n `  P )
2 lgsqr.s . . . . . . 7  |-  S  =  (Poly1 `  Y )
3 lgsqr.b . . . . . . 7  |-  B  =  ( Base `  S
)
4 lgsqr.d . . . . . . 7  |-  D  =  ( deg1  `  Y )
5 lgsqr.o . . . . . . 7  |-  O  =  (eval1 `  Y )
6 lgsqr.e . . . . . . 7  |-  .^  =  (.g
`  (mulGrp `  S )
)
7 lgsqr.x . . . . . . 7  |-  X  =  (var1 `  Y )
8 lgsqr.m . . . . . . 7  |-  .-  =  ( -g `  S )
9 lgsqr.u . . . . . . 7  |-  .1.  =  ( 1r `  S )
10 lgsqr.t . . . . . . 7  |-  T  =  ( ( ( ( P  -  1 )  /  2 )  .^  X )  .-  .1.  )
11 lgsqr.l . . . . . . 7  |-  L  =  ( ZRHom `  Y
)
12 lgsqr.1 . . . . . . 7  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
13 lgsqr.g . . . . . . 7  |-  G  =  ( y  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
y ^ 2 ) ) )
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13lgsqrlem2 22684 . . . . . 6  |-  ( ph  ->  G : ( 1 ... ( ( P  -  1 )  / 
2 ) ) -1-1-> ( `' ( O `  T ) " {
( 0g `  Y
) } ) )
15 fvex 5704 . . . . . . . . . . . 12  |-  ( O `
 T )  e. 
_V
1615cnvex 6528 . . . . . . . . . . 11  |-  `' ( O `  T )  e.  _V
17 imaexg 6518 . . . . . . . . . . 11  |-  ( `' ( O `  T
)  e.  _V  ->  ( `' ( O `  T ) " {
( 0g `  Y
) } )  e. 
_V )
1816, 17ax-mp 5 . . . . . . . . . 10  |-  ( `' ( O `  T
) " { ( 0g `  Y ) } )  e.  _V
1918f1dom 7334 . . . . . . . . 9  |-  ( G : ( 1 ... ( ( P  - 
1 )  /  2
) ) -1-1-> ( `' ( O `  T
) " { ( 0g `  Y ) } )  ->  (
1 ... ( ( P  -  1 )  / 
2 ) )  ~<_  ( `' ( O `  T ) " {
( 0g `  Y
) } ) )
2014, 19syl 16 . . . . . . . 8  |-  ( ph  ->  ( 1 ... (
( P  -  1 )  /  2 ) )  ~<_  ( `' ( O `  T )
" { ( 0g
`  Y ) } ) )
21 eqid 2443 . . . . . . . . . . . 12  |-  ( 0g
`  Y )  =  ( 0g `  Y
)
22 eqid 2443 . . . . . . . . . . . 12  |-  ( 0g
`  S )  =  ( 0g `  S
)
2312eldifad 3343 . . . . . . . . . . . . . 14  |-  ( ph  ->  P  e.  Prime )
241znfld 17996 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  Y  e. Field
)
2523, 24syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  Y  e. Field )
26 fldidom 17380 . . . . . . . . . . . . 13  |-  ( Y  e. Field  ->  Y  e. IDomn )
2725, 26syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  Y  e. IDomn )
28 isidom 17379 . . . . . . . . . . . . . . . . . . 19  |-  ( Y  e. IDomn 
<->  ( Y  e.  CRing  /\  Y  e. Domn ) )
2928simplbi 460 . . . . . . . . . . . . . . . . . 18  |-  ( Y  e. IDomn  ->  Y  e.  CRing )
3027, 29syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  Y  e.  CRing )
31 crngrng 16658 . . . . . . . . . . . . . . . . 17  |-  ( Y  e.  CRing  ->  Y  e.  Ring )
3230, 31syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  Y  e.  Ring )
332ply1rng 17706 . . . . . . . . . . . . . . . 16  |-  ( Y  e.  Ring  ->  S  e. 
Ring )
3432, 33syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  S  e.  Ring )
35 rnggrp 16653 . . . . . . . . . . . . . . 15  |-  ( S  e.  Ring  ->  S  e. 
Grp )
3634, 35syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  S  e.  Grp )
37 eqid 2443 . . . . . . . . . . . . . . . . 17  |-  (mulGrp `  S )  =  (mulGrp `  S )
3837rngmgp 16654 . . . . . . . . . . . . . . . 16  |-  ( S  e.  Ring  ->  (mulGrp `  S )  e.  Mnd )
3934, 38syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  (mulGrp `  S )  e.  Mnd )
40 oddprm 13885 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
4112, 40syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( P  - 
1 )  /  2
)  e.  NN )
4241nnnn0d 10639 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( P  - 
1 )  /  2
)  e.  NN0 )
437, 2, 3vr1cl 17674 . . . . . . . . . . . . . . . 16  |-  ( Y  e.  Ring  ->  X  e.  B )
4432, 43syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  X  e.  B )
4537, 3mgpbas 16600 . . . . . . . . . . . . . . . 16  |-  B  =  ( Base `  (mulGrp `  S ) )
4645, 6mulgnn0cl 15646 . . . . . . . . . . . . . . 15  |-  ( ( (mulGrp `  S )  e.  Mnd  /\  ( ( P  -  1 )  /  2 )  e. 
NN0  /\  X  e.  B )  ->  (
( ( P  - 
1 )  /  2
)  .^  X )  e.  B )
4739, 42, 44, 46syl3anc 1218 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( P  -  1 )  / 
2 )  .^  X
)  e.  B )
483, 9rngidcl 16668 . . . . . . . . . . . . . . 15  |-  ( S  e.  Ring  ->  .1.  e.  B )
4934, 48syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  .1.  e.  B )
503, 8grpsubcl 15609 . . . . . . . . . . . . . 14  |-  ( ( S  e.  Grp  /\  ( ( ( P  -  1 )  / 
2 )  .^  X
)  e.  B  /\  .1.  e.  B )  -> 
( ( ( ( P  -  1 )  /  2 )  .^  X )  .-  .1.  )  e.  B )
5136, 47, 49, 50syl3anc 1218 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( P  -  1 )  /  2 )  .^  X )  .-  .1.  )  e.  B )
5210, 51syl5eqel 2527 . . . . . . . . . . . 12  |-  ( ph  ->  T  e.  B )
5310fveq2i 5697 . . . . . . . . . . . . . . . 16  |-  ( D `
 T )  =  ( D `  (
( ( ( P  -  1 )  / 
2 )  .^  X
)  .-  .1.  )
)
5441nngt0d 10368 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  0  <  ( ( P  -  1 )  /  2 ) )
55 eqid 2443 . . . . . . . . . . . . . . . . . . . . . 22  |-  (algSc `  S )  =  (algSc `  S )
56 eqid 2443 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 1r
`  Y )  =  ( 1r `  Y
)
572, 55, 56, 9ply1scl1 17747 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Y  e.  Ring  ->  ( (algSc `  S ) `  ( 1r `  Y ) )  =  .1.  )
5832, 57syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( (algSc `  S
) `  ( 1r `  Y ) )  =  .1.  )
5958fveq2d 5698 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( D `  (
(algSc `  S ) `  ( 1r `  Y
) ) )  =  ( D `  .1.  ) )
60 eqid 2443 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( Base `  Y )  =  (
Base `  Y )
6160, 56rngidcl 16668 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Y  e.  Ring  ->  ( 1r
`  Y )  e.  ( Base `  Y
) )
6232, 61syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( 1r `  Y
)  e.  ( Base `  Y ) )
6328simprbi 464 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( Y  e. IDomn  ->  Y  e. Domn )
64 domnnzr 17370 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( Y  e. Domn  ->  Y  e. NzRing )
6563, 64syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( Y  e. IDomn  ->  Y  e. NzRing )
6627, 65syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  Y  e. NzRing )
6756, 21nzrnz 17345 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Y  e. NzRing  ->  ( 1r `  Y )  =/=  ( 0g `  Y ) )
6866, 67syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( 1r `  Y
)  =/=  ( 0g
`  Y ) )
694, 2, 60, 55, 21deg1scl 21588 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( Y  e.  Ring  /\  ( 1r `  Y )  e.  ( Base `  Y
)  /\  ( 1r `  Y )  =/=  ( 0g `  Y ) )  ->  ( D `  ( (algSc `  S ) `  ( 1r `  Y
) ) )  =  0 )
7032, 62, 68, 69syl3anc 1218 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( D `  (
(algSc `  S ) `  ( 1r `  Y
) ) )  =  0 )
7159, 70eqtr3d 2477 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( D `  .1.  )  =  0 )
724, 2, 7, 37, 6deg1pw 21595 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Y  e. NzRing  /\  (
( P  -  1 )  /  2 )  e.  NN0 )  -> 
( D `  (
( ( P  - 
1 )  /  2
)  .^  X )
)  =  ( ( P  -  1 )  /  2 ) )
7366, 42, 72syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( D `  (
( ( P  - 
1 )  /  2
)  .^  X )
)  =  ( ( P  -  1 )  /  2 ) )
7454, 71, 733brtr4d 4325 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( D `  .1.  )  <  ( D `  ( ( ( P  -  1 )  / 
2 )  .^  X
) ) )
752, 4, 32, 3, 8, 47, 49, 74deg1sub 21583 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( D `  (
( ( ( P  -  1 )  / 
2 )  .^  X
)  .-  .1.  )
)  =  ( D `
 ( ( ( P  -  1 )  /  2 )  .^  X ) ) )
7653, 75syl5eq 2487 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( D `  T
)  =  ( D `
 ( ( ( P  -  1 )  /  2 )  .^  X ) ) )
7776, 73eqtrd 2475 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( D `  T
)  =  ( ( P  -  1 )  /  2 ) )
7877, 42eqeltrd 2517 . . . . . . . . . . . . 13  |-  ( ph  ->  ( D `  T
)  e.  NN0 )
794, 2, 22, 3deg1nn0clb 21564 . . . . . . . . . . . . . 14  |-  ( ( Y  e.  Ring  /\  T  e.  B )  ->  ( T  =/=  ( 0g `  S )  <->  ( D `  T )  e.  NN0 ) )
8032, 52, 79syl2anc 661 . . . . . . . . . . . . 13  |-  ( ph  ->  ( T  =/=  ( 0g `  S )  <->  ( D `  T )  e.  NN0 ) )
8178, 80mpbird 232 . . . . . . . . . . . 12  |-  ( ph  ->  T  =/=  ( 0g
`  S ) )
822, 3, 4, 5, 21, 22, 27, 52, 81fta1g 21642 . . . . . . . . . . 11  |-  ( ph  ->  ( # `  ( `' ( O `  T ) " {
( 0g `  Y
) } ) )  <_  ( D `  T ) )
8382, 77breqtrd 4319 . . . . . . . . . 10  |-  ( ph  ->  ( # `  ( `' ( O `  T ) " {
( 0g `  Y
) } ) )  <_  ( ( P  -  1 )  / 
2 ) )
84 hashfz1 12120 . . . . . . . . . . 11  |-  ( ( ( P  -  1 )  /  2 )  e.  NN0  ->  ( # `  ( 1 ... (
( P  -  1 )  /  2 ) ) )  =  ( ( P  -  1 )  /  2 ) )
8542, 84syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( # `  (
1 ... ( ( P  -  1 )  / 
2 ) ) )  =  ( ( P  -  1 )  / 
2 ) )
8683, 85breqtrrd 4321 . . . . . . . . 9  |-  ( ph  ->  ( # `  ( `' ( O `  T ) " {
( 0g `  Y
) } ) )  <_  ( # `  (
1 ... ( ( P  -  1 )  / 
2 ) ) ) )
8718a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  ( `' ( O `
 T ) " { ( 0g `  Y ) } )  e.  _V )
88 hashbnd 12112 . . . . . . . . . . 11  |-  ( ( ( `' ( O `
 T ) " { ( 0g `  Y ) } )  e.  _V  /\  (
( P  -  1 )  /  2 )  e.  NN0  /\  ( # `
 ( `' ( O `  T )
" { ( 0g
`  Y ) } ) )  <_  (
( P  -  1 )  /  2 ) )  ->  ( `' ( O `  T )
" { ( 0g
`  Y ) } )  e.  Fin )
8987, 42, 83, 88syl3anc 1218 . . . . . . . . . 10  |-  ( ph  ->  ( `' ( O `
 T ) " { ( 0g `  Y ) } )  e.  Fin )
90 fzfid 11798 . . . . . . . . . 10  |-  ( ph  ->  ( 1 ... (
( P  -  1 )  /  2 ) )  e.  Fin )
91 hashdom 12145 . . . . . . . . . 10  |-  ( ( ( `' ( O `
 T ) " { ( 0g `  Y ) } )  e.  Fin  /\  (
1 ... ( ( P  -  1 )  / 
2 ) )  e. 
Fin )  ->  (
( # `  ( `' ( O `  T
) " { ( 0g `  Y ) } ) )  <_ 
( # `  ( 1 ... ( ( P  -  1 )  / 
2 ) ) )  <-> 
( `' ( O `
 T ) " { ( 0g `  Y ) } )  ~<_  ( 1 ... (
( P  -  1 )  /  2 ) ) ) )
9289, 90, 91syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( ( # `  ( `' ( O `  T ) " {
( 0g `  Y
) } ) )  <_  ( # `  (
1 ... ( ( P  -  1 )  / 
2 ) ) )  <-> 
( `' ( O `
 T ) " { ( 0g `  Y ) } )  ~<_  ( 1 ... (
( P  -  1 )  /  2 ) ) ) )
9386, 92mpbid 210 . . . . . . . 8  |-  ( ph  ->  ( `' ( O `
 T ) " { ( 0g `  Y ) } )  ~<_  ( 1 ... (
( P  -  1 )  /  2 ) ) )
94 sbth 7434 . . . . . . . 8  |-  ( ( ( 1 ... (
( P  -  1 )  /  2 ) )  ~<_  ( `' ( O `  T )
" { ( 0g
`  Y ) } )  /\  ( `' ( O `  T
) " { ( 0g `  Y ) } )  ~<_  ( 1 ... ( ( P  -  1 )  / 
2 ) ) )  ->  ( 1 ... ( ( P  - 
1 )  /  2
) )  ~~  ( `' ( O `  T ) " {
( 0g `  Y
) } ) )
9520, 93, 94syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( 1 ... (
( P  -  1 )  /  2 ) )  ~~  ( `' ( O `  T
) " { ( 0g `  Y ) } ) )
96 f1finf1o 7542 . . . . . . 7  |-  ( ( ( 1 ... (
( P  -  1 )  /  2 ) )  ~~  ( `' ( O `  T
) " { ( 0g `  Y ) } )  /\  ( `' ( O `  T ) " {
( 0g `  Y
) } )  e. 
Fin )  ->  ( G : ( 1 ... ( ( P  - 
1 )  /  2
) ) -1-1-> ( `' ( O `  T
) " { ( 0g `  Y ) } )  <->  G :
( 1 ... (
( P  -  1 )  /  2 ) ) -1-1-onto-> ( `' ( O `
 T ) " { ( 0g `  Y ) } ) ) )
9795, 89, 96syl2anc 661 . . . . . 6  |-  ( ph  ->  ( G : ( 1 ... ( ( P  -  1 )  /  2 ) )
-1-1-> ( `' ( O `
 T ) " { ( 0g `  Y ) } )  <-> 
G : ( 1 ... ( ( P  -  1 )  / 
2 ) ) -1-1-onto-> ( `' ( O `  T
) " { ( 0g `  Y ) } ) ) )
9814, 97mpbid 210 . . . . 5  |-  ( ph  ->  G : ( 1 ... ( ( P  -  1 )  / 
2 ) ) -1-1-onto-> ( `' ( O `  T
) " { ( 0g `  Y ) } ) )
99 f1ocnv 5656 . . . . 5  |-  ( G : ( 1 ... ( ( P  - 
1 )  /  2
) ) -1-1-onto-> ( `' ( O `
 T ) " { ( 0g `  Y ) } )  ->  `' G :
( `' ( O `
 T ) " { ( 0g `  Y ) } ) -1-1-onto-> ( 1 ... ( ( P  -  1 )  /  2 ) ) )
100 f1of 5644 . . . . 5  |-  ( `' G : ( `' ( O `  T
) " { ( 0g `  Y ) } ) -1-1-onto-> ( 1 ... (
( P  -  1 )  /  2 ) )  ->  `' G : ( `' ( O `  T )
" { ( 0g
`  Y ) } ) --> ( 1 ... ( ( P  - 
1 )  /  2
) ) )
10198, 99, 1003syl 20 . . . 4  |-  ( ph  ->  `' G : ( `' ( O `  T
) " { ( 0g `  Y ) } ) --> ( 1 ... ( ( P  -  1 )  / 
2 ) ) )
102 lgsqr.3 . . . . 5  |-  ( ph  ->  A  e.  ZZ )
103 lgsqr.4 . . . . 5  |-  ( ph  ->  ( A  /L
P )  =  1 )
1041, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 102, 103lgsqrlem3 22685 . . . 4  |-  ( ph  ->  ( L `  A
)  e.  ( `' ( O `  T
) " { ( 0g `  Y ) } ) )
105101, 104ffvelrnd 5847 . . 3  |-  ( ph  ->  ( `' G `  ( L `  A ) )  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) ) )
106 elfzelz 11456 . . 3  |-  ( ( `' G `  ( L `
 A ) )  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  ->  ( `' G `  ( L `
 A ) )  e.  ZZ )
107105, 106syl 16 . 2  |-  ( ph  ->  ( `' G `  ( L `  A ) )  e.  ZZ )
108 oveq1 6101 . . . . . . 7  |-  ( x  =  ( `' G `  ( L `  A
) )  ->  (
x ^ 2 )  =  ( ( `' G `  ( L `
 A ) ) ^ 2 ) )
109108fveq2d 5698 . . . . . 6  |-  ( x  =  ( `' G `  ( L `  A
) )  ->  ( L `  ( x ^ 2 ) )  =  ( L `  ( ( `' G `  ( L `  A
) ) ^ 2 ) ) )
110 oveq1 6101 . . . . . . . . 9  |-  ( y  =  x  ->  (
y ^ 2 )  =  ( x ^
2 ) )
111110fveq2d 5698 . . . . . . . 8  |-  ( y  =  x  ->  ( L `  ( y ^ 2 ) )  =  ( L `  ( x ^ 2 ) ) )
112111cbvmptv 4386 . . . . . . 7  |-  ( y  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( y ^
2 ) ) )  =  ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( x ^ 2 ) ) )
11313, 112eqtri 2463 . . . . . 6  |-  G  =  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
x ^ 2 ) ) )
114 fvex 5704 . . . . . 6  |-  ( L `
 ( ( `' G `  ( L `
 A ) ) ^ 2 ) )  e.  _V
115109, 113, 114fvmpt 5777 . . . . 5  |-  ( ( `' G `  ( L `
 A ) )  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  ->  ( G `  ( `' G `  ( L `  A ) ) )  =  ( L `  ( ( `' G `  ( L `  A
) ) ^ 2 ) ) )
116105, 115syl 16 . . . 4  |-  ( ph  ->  ( G `  ( `' G `  ( L `
 A ) ) )  =  ( L `
 ( ( `' G `  ( L `
 A ) ) ^ 2 ) ) )
117 f1ocnvfv2 5987 . . . . 5  |-  ( ( G : ( 1 ... ( ( P  -  1 )  / 
2 ) ) -1-1-onto-> ( `' ( O `  T
) " { ( 0g `  Y ) } )  /\  ( L `  A )  e.  ( `' ( O `
 T ) " { ( 0g `  Y ) } ) )  ->  ( G `  ( `' G `  ( L `  A ) ) )  =  ( L `  A ) )
11898, 104, 117syl2anc 661 . . . 4  |-  ( ph  ->  ( G `  ( `' G `  ( L `
 A ) ) )  =  ( L `
 A ) )
119116, 118eqtr3d 2477 . . 3  |-  ( ph  ->  ( L `  (
( `' G `  ( L `  A ) ) ^ 2 ) )  =  ( L `
 A ) )
120 prmnn 13769 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  NN )
12123, 120syl 16 . . . . 5  |-  ( ph  ->  P  e.  NN )
122121nnnn0d 10639 . . . 4  |-  ( ph  ->  P  e.  NN0 )
123 zsqcl 11939 . . . . 5  |-  ( ( `' G `  ( L `
 A ) )  e.  ZZ  ->  (
( `' G `  ( L `  A ) ) ^ 2 )  e.  ZZ )
124107, 123syl 16 . . . 4  |-  ( ph  ->  ( ( `' G `  ( L `  A
) ) ^ 2 )  e.  ZZ )
1251, 11zndvds 17985 . . . 4  |-  ( ( P  e.  NN0  /\  ( ( `' G `  ( L `  A
) ) ^ 2 )  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( L `  ( ( `' G `  ( L `  A
) ) ^ 2 ) )  =  ( L `  A )  <-> 
P  ||  ( (
( `' G `  ( L `  A ) ) ^ 2 )  -  A ) ) )
126122, 124, 102, 125syl3anc 1218 . . 3  |-  ( ph  ->  ( ( L `  ( ( `' G `  ( L `  A
) ) ^ 2 ) )  =  ( L `  A )  <-> 
P  ||  ( (
( `' G `  ( L `  A ) ) ^ 2 )  -  A ) ) )
127119, 126mpbid 210 . 2  |-  ( ph  ->  P  ||  ( ( ( `' G `  ( L `  A ) ) ^ 2 )  -  A ) )
128108oveq1d 6109 . . . 4  |-  ( x  =  ( `' G `  ( L `  A
) )  ->  (
( x ^ 2 )  -  A )  =  ( ( ( `' G `  ( L `
 A ) ) ^ 2 )  -  A ) )
129128breq2d 4307 . . 3  |-  ( x  =  ( `' G `  ( L `  A
) )  ->  ( P  ||  ( ( x ^ 2 )  -  A )  <->  P  ||  (
( ( `' G `  ( L `  A
) ) ^ 2 )  -  A ) ) )
130129rspcev 3076 . 2  |-  ( ( ( `' G `  ( L `  A ) )  e.  ZZ  /\  P  ||  ( ( ( `' G `  ( L `
 A ) ) ^ 2 )  -  A ) )  ->  E. x  e.  ZZ  P  ||  ( ( x ^ 2 )  -  A ) )
131107, 127, 130syl2anc 661 1  |-  ( ph  ->  E. x  e.  ZZ  P  ||  ( ( x ^ 2 )  -  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1369    e. wcel 1756    =/= wne 2609   E.wrex 2719   _Vcvv 2975    \ cdif 3328   {csn 3880   class class class wbr 4295    e. cmpt 4353   `'ccnv 4842   "cima 4846   -->wf 5417   -1-1->wf1 5418   -1-1-onto->wf1o 5420   ` cfv 5421  (class class class)co 6094    ~~ cen 7310    ~<_ cdom 7311   Fincfn 7313   0cc0 9285   1c1 9286    < clt 9421    <_ cle 9422    - cmin 9598    / cdiv 9996   NNcn 10325   2c2 10374   NN0cn0 10582   ZZcz 10649   ...cfz 11440   ^cexp 11868   #chash 12106    || cdivides 13538   Primecprime 13766   Basecbs 14177   0gc0g 14381   Mndcmnd 15412   Grpcgrp 15413   -gcsg 15416  .gcmg 15417  mulGrpcmgp 16594   1rcur 16606   Ringcrg 16648   CRingccrg 16649  Fieldcfield 16836  NzRingcnzr 17342  Domncdomn 17354  IDomncidom 17355  algSccascl 17386  var1cv1 17635  Poly1cpl1 17636  eval1ce1 17752   ZRHomczrh 17934  ℤ/nczn 17937   deg1 cdg1 21526    /Lclgs 22636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375  ax-inf2 7850  ax-cnex 9341  ax-resscn 9342  ax-1cn 9343  ax-icn 9344  ax-addcl 9345  ax-addrcl 9346  ax-mulcl 9347  ax-mulrcl 9348  ax-mulcom 9349  ax-addass 9350  ax-mulass 9351  ax-distr 9352  ax-i2m1 9353  ax-1ne0 9354  ax-1rid 9355  ax-rnegex 9356  ax-rrecex 9357  ax-cnre 9358  ax-pre-lttri 9359  ax-pre-lttrn 9360  ax-pre-ltadd 9361  ax-pre-mulgt0 9362  ax-pre-sup 9363  ax-addf 9364  ax-mulf 9365
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-nel 2612  df-ral 2723  df-rex 2724  df-reu 2725  df-rmo 2726  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-pss 3347  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-tp 3885  df-op 3887  df-uni 4095  df-int 4132  df-iun 4176  df-iin 4177  df-br 4296  df-opab 4354  df-mpt 4355  df-tr 4389  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-se 4683  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-riota 6055  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-of 6323  df-ofr 6324  df-om 6480  df-1st 6580  df-2nd 6581  df-supp 6694  df-tpos 6748  df-recs 6835  df-rdg 6869  df-1o 6923  df-2o 6924  df-oadd 6927  df-er 7104  df-ec 7106  df-qs 7110  df-map 7219  df-pm 7220  df-ixp 7267  df-en 7314  df-dom 7315  df-sdom 7316  df-fin 7317  df-fsupp 7624  df-sup 7694  df-oi 7727  df-card 8112  df-cda 8340  df-pnf 9423  df-mnf 9424  df-xr 9425  df-ltxr 9426  df-le 9427  df-sub 9600  df-neg 9601  df-div 9997  df-nn 10326  df-2 10383  df-3 10384  df-4 10385  df-5 10386  df-6 10387  df-7 10388  df-8 10389  df-9 10390  df-10 10391  df-n0 10583  df-z 10650  df-dec 10759  df-uz 10865  df-q 10957  df-rp 10995  df-fz 11441  df-fzo 11552  df-fl 11645  df-mod 11712  df-seq 11810  df-exp 11869  df-hash 12107  df-cj 12591  df-re 12592  df-im 12593  df-sqr 12727  df-abs 12728  df-dvds 13539  df-gcd 13694  df-prm 13767  df-phi 13844  df-pc 13907  df-struct 14179  df-ndx 14180  df-slot 14181  df-base 14182  df-sets 14183  df-ress 14184  df-plusg 14254  df-mulr 14255  df-starv 14256  df-sca 14257  df-vsca 14258  df-ip 14259  df-tset 14260  df-ple 14261  df-ds 14263  df-unif 14264  df-hom 14265  df-cco 14266  df-0g 14383  df-gsum 14384  df-prds 14389  df-pws 14391  df-imas 14449  df-divs 14450  df-mre 14527  df-mrc 14528  df-acs 14530  df-mnd 15418  df-mhm 15467  df-submnd 15468  df-grp 15548  df-minusg 15549  df-sbg 15550  df-mulg 15551  df-subg 15681  df-nsg 15682  df-eqg 15683  df-ghm 15748  df-cntz 15838  df-cmn 16282  df-abl 16283  df-mgp 16595  df-ur 16607  df-srg 16611  df-rng 16650  df-cring 16651  df-oppr 16718  df-dvdsr 16736  df-unit 16737  df-invr 16767  df-dvr 16778  df-rnghom 16809  df-drng 16837  df-field 16838  df-subrg 16866  df-lmod 16953  df-lss 17017  df-lsp 17056  df-sra 17256  df-rgmod 17257  df-lidl 17258  df-rsp 17259  df-2idl 17317  df-nzr 17343  df-rlreg 17357  df-domn 17358  df-idom 17359  df-assa 17387  df-asp 17388  df-ascl 17389  df-psr 17426  df-mvr 17427  df-mpl 17428  df-opsr 17430  df-evls 17591  df-evl 17592  df-psr1 17639  df-vr1 17640  df-ply1 17641  df-coe1 17642  df-evl1 17754  df-cnfld 17822  df-zring 17887  df-zrh 17938  df-zn 17941  df-mdeg 21527  df-deg1 21528  df-mon1 21605  df-uc1p 21606  df-q1p 21607  df-r1p 21608  df-lgs 22637
This theorem is referenced by:  lgsqrlem5  22687
  Copyright terms: Public domain W3C validator